“Rig-space physics” by Hahn, Martin, Thomaszewski, Sumner, Coros, et al. …

  • ©Fabian Hahn, Sebastian Martin, Bernhard Thomaszewski, Robert W. Sumner, Stelian Coros, and Markus Gross


Abstract:


    We present a method that brings the benefits of physics-based simulations to traditional animation pipelines. We formulate the equations of motions in the subspace of deformations defined by an animator’s rig. Our framework fits seamlessly into the workflow typically employed by artists, as our output consists of animation curves that are identical in nature to the result of manual keyframing. Artists can therefore explore the full spectrum between handcrafted animation and unrestricted physical simulation. To enhance the artist’s control, we provide a method that transforms stiffness values defined on rig parameters to a non-homogeneous distribution of material parameters for the underlying FEM model. In addition, we use automatically extracted high-level rig parameters to intuitively edit the results of our simulations, and also to speed up computation. To demonstrate the effectiveness of our method, we create compelling results by adding rich physical motions to coarse input animations. In the absence of artist input, we create realistic passive motion directly in rig space.

References:


    1. Baran, I., and Popović, J. 2007. Automatic rigging and animation of 3d characters. In Proc. of ACM SIGGRAPH ’07. Google ScholarDigital Library
    2. Barbić, J., and James, D. L. 2010. Subspace self-collision culling. In Proc. of ACM SIGGRAPH ’10. Google ScholarDigital Library
    3. Barbić, J., and Zhao, Y. 2011. Real-time large-deformation substructuring. In Proc. of ACM SIGGRAPH ’11. Google ScholarDigital Library
    4. Barr, A. H. 1984. Global and local deformations of solid primitives. In Proc. of ACM SIGGRAPH ’84. Google ScholarDigital Library
    5. Capell, S., Green, S., Curless, B., Duchamp, T., and Popović, Z. 2002. Interactive skeleton-driven dynamic deformations. In Proc. of ACM SIGGRAPH ’02. Google ScholarDigital Library
    6. Dambreville, S., Rathi, Y., and Tannen, A. 2006. Shape-based approach to robust image segmentation using kernel PCA. In Computer Vision and Pattern Recognition (CVPR) ’06. Google ScholarDigital Library
    7. Faloutsos, P., van de Panne, M., and Terzopoulos, D. 1997. Dynamic free-form deformations for animation synthesis. IEEE Trans. on Visualization and Computer Graphics 3, 3. Google ScholarDigital Library
    8. Fröhlich, S., and Botsch, M. 2011. Example-driven deformations based on discrete shells. Computer Graphics Forum 30.Google Scholar
    9. Gilles, B., Bousquet, G., Faure, F., and Pai, D. 2011. Frame-based elastic models. ACM Trans. on Graphics 30, 2. Google ScholarDigital Library
    10. Irving, G., Teran, J., and Fedkiw, R. 2004. Invertible finite elements for robust simulation of large deformation. In Proc. of Symp. on Computer Animation (SCA) ’04. Google ScholarDigital Library
    11. James, D. L., and Fatahalian, K. 2003. Precomputing inter-active dynamic deformable scenes. In Proc. of ACM SIGGRAPH ’03. Google ScholarDigital Library
    12. Joshi, P., Meyer, M., DeRose, T., Green, B., and Sanocki, T. 2007. Harmonic coordinates for character articulation. In Proc. of ACM SIGGRAPH ’07. Google ScholarDigital Library
    13. Ju, T., Zhou, Q.-Y., van de Panne, M., Cohen-Or, D., and Neumann, U. 2008. Reusable skinning templates using cage-based deformations. In Proc. of ACM SIGGRAPH Asia ’08. Google ScholarDigital Library
    14. Kim, T., and James, D. L. 2009. Skipping steps in deformable simulation with online model reduction. In Proc. of ACM SIGGRAPH ’09. Google ScholarDigital Library
    15. Krause, R., and Walloth, M. 2009. A time discretization scheme based on rothes method for dynamical contact problems with friction. Computer Methods in Applied Mechanics and Engineering 199, 1–4.Google ScholarCross Ref
    16. Krysl, P., Lall, S., and Marsden, J. E. 2001. Dimensional model reduction in non-linear finite element dynamics of solids and structures. International Journal for Numerical Methods in Engineering 51, 4.Google ScholarCross Ref
    17. Levin, D. I. W., Litven, J., Jones, G. L., Sueda, S., and Pai, D. K. 2011. Eulerian solid simulation with contact. In Proc. of ACM SIGGRAPH ’11. Google ScholarDigital Library
    18. Lewis, J. P., Cordner, M., and Fong, N. 2000. Pose space deformation: a unified approach to shape interpolation and skeleton-driven deformation. In Proc. of ACM SIGGRAPH ’00. Google ScholarDigital Library
    19. Li, H., Weise, T., and Pauly, M. 2010. Example-based facial rigging. In Proc. of ACM SIGGRAPH ’10. Google ScholarDigital Library
    20. Magnenat-Thalmann, N., Laperrière, R., and Thalmann, D. 1989. Joint-dependent local deformations for hand animation and object grasping. In Proc. of Graphics Interface ’88. Google ScholarDigital Library
    21. Martin, S., Thomaszewski, B., Grinspun, E., and Gross, M. 2011. Example-based elastic materials. In Proc. of ACM SIGGRAPH ’11. Google ScholarDigital Library
    22. McAdams, A., Zhu, Y., Selle, A., Empey, M., Tamstorf, R., Teran, J., and Sifakis, E. 2011. Efficient elasticity for character skinning with contact and collisions. In Proc. of ACM SIGGRAPH ’11. Google ScholarDigital Library
    23. Nocedal, J., and Wright, S. J. 2006. Numerical Optimization. Springer.Google Scholar
    24. Rohmer, D., Hahmann, S., and Cani, M.-P. 2009. Exact volume preserving skinning with shape control. In Proc. of Symp. on Computer Animation (SCA) ’09. Google ScholarDigital Library
    25. Savoye, Y., and Franco, J.-S. 2010. CageIK: dual-laplacian cage-based inverse kinematics. In Proceedings of the 6th international conference on Articulated motion and deformable objects (ADMO) ’10. Google ScholarDigital Library
    26. Sederberg, T. W., and Parry, S. R. 1986. Free-form deformation of solid geometric models. In Proc. of ACM SIGGRAPH ’86. Google ScholarDigital Library
    27. Seol, Y., Seo, J., Kim, P. H., Lewis, J. P., and Noh, J. 2011. Artist friendly facial animation retargeting. In Proc. of ACM SIGGRAPH Asia ’11. Google Scholar
    28. Singh, K., and Fiume, E. L. 1998. Wires: A geometric deformation technique. In Proc. of ACM SIGGRAPH ’98. Google ScholarDigital Library
    29. Sloan, P.-P. J., Rose, III, C. F., and Cohen, M. F. 2001. Shape by example. In Proc. of Symp. on Interactive 3D Graphics ’01. Google ScholarDigital Library
    30. Sumner, R. W., Zwicker, M., Gotsman, C., and Popović, J. 2005. Mesh-based inverse kinematics. In Proc. of ACM SIGGRAPH ’05. Google ScholarDigital Library
    31. Whitaker, H., and Halas, J. 2002. Timing for Animation. Focal Press.Google Scholar
    32. Yamane, K. 2004. Simulating and Generating Motions of Human Figures. Springer. Google ScholarDigital Library


ACM Digital Library Publication:



Overview Page: