“Rig animation with a tangible and modular input device” by Glauser, Ma, Panozzo, Jacobson, Hilliges, et al. …

  • ©Oliver Glauser, Wan-Chun Alex Ma, Daniele Panozzo, Alec Jacobson, Otmar Hilliges, and Olga Sorkine-Hornung

Conference:


Type:


Title:

    Rig animation with a tangible and modular input device

Session/Category Title:   USER INTERFACES


Presenter(s)/Author(s):


Moderator(s):



Abstract:


    We propose a novel approach to digital character animation, combining the benefits of tangible input devices and sophisticated rig animation algorithms. A symbiotic software and hardware approach facilitates the animation process for novice and expert users alike. We overcome limitations inherent to all previous tangible devices by allowing users to directly control complex rigs using only a small set (5-10) of physical controls. This avoids oversimplification of the pose space and excessively bulky device configurations. Our algorithm derives a small device configuration from complex character rigs, often containing hundreds of degrees of freedom, and a set of sparse sample poses. Importantly, only the most influential degrees of freedom are controlled directly, yet detailed motion is preserved based on a pose interpolation technique. We designed a modular collection of joints and splitters, which can be assembled to represent a wide variety of skeletons. Each joint piece combines a universal joint and two twisting elements, allowing to accurately sense its configuration. The mechanical design provides a smooth inverse kinematics-like user experience and is not prone to gimbal locking. We integrate our method with the professional 3D software Autodesk Maya® and discuss a variety of results created with characters available online. Comparative user experiments show significant improvements over the closest state-of-the-art in terms of accuracy and time in a keyframe posing task.

References:


    1. Achibet, M., Casiez, G., Lécuyer, A., and Marchal, M. 2015. Thing: Introducing a tablet-based interaction technique for controlling 3d hand models. In Proc. CHI. Google ScholarDigital Library
    2. Ahn, J., and Wohn, K. 2004. Motion level-of-detail: A simplification method on crowd scene. In Proc. Computer Animation and Social Agents.Google Scholar
    3. Au, O. K.-C., Tai, C.-L., Chu, H.-K., Cohen-Or, D., and Lee, T.-Y. 2008. Skeleton extraction by mesh contraction. ACM Trans. Graph. 27, 3. Google ScholarDigital Library
    4. Baran, I., Vlasic, D., Grinspun, E., and Popović, J. 2009. Semantic deformation transfer. ACM Trans. Graph. 28, 3. Google ScholarDigital Library
    5. Botsch, M., and Sorkine, O. 2008. On linear variational surface deformation methods. IEEE Transactions on Visualization and Computer Graphics 14, 1, 213–230. Google ScholarDigital Library
    6. Buck, I., Finkelstein, A., Jacobs, C., Klein, A., Salesin, D. H., Seims, J., Szeliski, R., and Toyama, K. 2000. Performance-driven hand-drawn animation. In Proc. NPAR. Google ScholarDigital Library
    7. Celsys, Inc., 2013. QUMARION. http://www.clip-studio.com.Google Scholar
    8. Chien, C.-y., Liang, R.-H., Lin, L.-F., Chan, L., and Chen, B.-Y. 2015. Flexibend: Enabling interactivity of multi-part, deformable fabrications using single shape-sensing strip. In Proc. UIST. Google ScholarDigital Library
    9. Esposito, C., Paley, W. B., and Ong, J. 1995. Of mice and monkeys: a specialized input device for virtual body animation. In Proc. I3D. Google ScholarDigital Library
    10. Fender, A., Müller, J., and Lindlbauer, D. 2015. Creature teacher: A performance-based animation system for creating cyclic movements. In Proc. SUI. Google ScholarDigital Library
    11. Feng, T.-C., Gunawardane, P., Davis, J., and Jiang, B. 2008. Motion capture data retrieval using an artist’s doll. In Proc. ICPR, 1–4.Google Scholar
    12. Gleicher, M. 1998. Retargetting motion to new characters. In Proc. SIGGRAPH. Google ScholarDigital Library
    13. Guay, M., Cani, M.-P., and Ronfard, R. 2013. The line of action: An intuitive interface for expressive character posing. ACM Trans. Graph. 32, 6 (Nov.), 205:1–205:8. Google ScholarDigital Library
    14. Guay, M., Ronfard, R., Gleicher, M., and Cani, M.-P. 2015. Space-time sketching of character animation. ACM Trans. Graph. 34, 4 (July), 118:1–118:10. Google ScholarDigital Library
    15. Gurobi Optimization, I., 2015. Gurobi optimizer reference manual.Google Scholar
    16. Hahn, F., Martin, S., Thomaszewski, B., Sumner, R., Coros, S., and Gross, M. 2012. Rig-space physics. ACM Trans. Graph.. Google ScholarDigital Library
    17. Hahn, F., Mutzel, F., Coros, S., Thomaszewski, B., Nitti, M., Gross, M., and Sumner, R. W. 2015. Sketch abstractions for character posing. In Proc. SCA. Google ScholarDigital Library
    18. Held, R., Gupta, A., Curless, B., and Agrawala, M. 2012. 3d puppetry: A kinect-based interface for 3d animation. In Proc. UIST, ACM, New York, NY, USA, 423–434. Google ScholarDigital Library
    19. Holden, D., Saito, J., and Komura, T. 2015. Learning an inverse rig mapping for character animation. In Proc. SCA. Google ScholarDigital Library
    20. Huang, W., 2015. Deformation learning solver. https://github.com/WebberHuang/DeformationLearningSolver.Google Scholar
    21. Ishii, H., and Ullmer, B. 1997. Tangible bits: Towards seamless interfaces between people, bits and atoms. In Proc. CHI. Google ScholarDigital Library
    22. Jacob, R. J. K., Sibert, L. E., McFarlane, D. C., and Mullen, Jr., M. P. 1994. Integrality and separability of input devices. ACM Trans. Comput.-Hum. Interact. 1, 1 (Mar.), 3–26. Google ScholarDigital Library
    23. Jacobson, A., Baran, I., Kavan, L., Popović, J., and Sorkine, O. 2012. Fast automatic skinning transformations. ACM Trans. Graph.. Google ScholarDigital Library
    24. Jacobson, A., Deng, Z., Kavan, L., and Lewis, J. 2014. Skinning: Real-time shape deformation. In ACM SIGGRAPH 2014 Courses. Google ScholarDigital Library
    25. Jacobson, A., Panozzo, D., Glauser, O., Pradalier, C., Hilliges, O., and Sorkine-Hornung, O. 2014. Tangible and modular input device for character articulation. ACM Transactions on Graphics (proceedings of ACM SIGGRAPH) 33, 4, 82:1–82:12. Google ScholarDigital Library
    26. Jin, M., Gopstein, D., Gingold, Y., and Nealen, A. 2015. Animesh: Interleaved animation, modeling, and editing. ACM Trans. Graph.. Google ScholarDigital Library
    27. Kabsch, W. 1976. A solution for the best rotation to relate two sets of vectors. Acta Crystallographica Section A: Crystal Physics, Diffraction, Theoretical and General Crystallography 32, 5, 922–923.Google ScholarCross Ref
    28. Knep, B., Hayes, C., Sayre, R., and Williams, T. 1995. Dinosaur input device. In Proc. CHI, 304–309. Google ScholarDigital Library
    29. Le, B. H., and Deng, Z. 2014. Robust and accurate skeletal rigging from mesh sequences. ACM Trans. Graph. 33, 4, 84. Google ScholarDigital Library
    30. Lewis, J. P., and Anjyo, K.-i. 2010. Direct manipulation blendshapes. IEEE Comput. Graph. Appl. 30, 4 (July), 42–50. Google ScholarDigital Library
    31. Lewis, J. P., Cordner, M., and Fong, N. 2000. Pose space deformation: A unified approach to shape interpolation and skeleton-driven deformation. In Proc. SIGGRAPH. Google ScholarDigital Library
    32. Masliah, M. R., and Milgram, P. 2000. Measuring the allocation of control in a 6 degree-of-freedom docking experiment. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, ACM, New York, NY, USA, CHI ’00, 25–32. Google ScholarDigital Library
    33. Maya, 2014. Autodesk, http://www.autodesk.com/maya.Google Scholar
    34. Nakagaki, K., Follmer, S., and Ishii, H. 2015. Lineform: Actuated curve interfaces for display, interaction, and constraint. In Proc. UIST. Google ScholarDigital Library
    35. Öztireli, A. C., Baran, I., Popa, T., Dalstein, B., Sumner, R. W., and Gross, M. 2013. Differential blending for expressive sketch-based posing. In Proc. SCA. Google ScholarDigital Library
    36. Rhodin, H., Tompkin, J., Kim, K. I., Kiran, V., Seidel, H.-P., and Theobalt, C.Google Scholar
    37. Savoye, Y., and Meyer, A. 2008. Multi-layer level of detail for character animation. In Workshop in Virtual Reality Interactions and Physical Simulation “VRIPHYS” (2008).Google Scholar
    38. Schaefer, S., and Yuksel, C. 2007. Example-based skeleton extraction. In Proc. SGP. Google ScholarDigital Library
    39. Shiratori, T., Mahler, M., Trezevant, W., and Hodgins, J. 2013. Expressing animated performances through puppeteering. In Proc. 3DUI.Google Scholar
    40. Sumner, R., and Popović, J. 2004. Deformation transfer for triangle meshes. ACM Trans. Graph. 23, 3, 399–405. Google ScholarDigital Library
    41. Sumner, R. W., Zwicker, M., Gotsman, C., and Popović, J. 2005. Mesh-based inverse kinematics. ACM Trans. Graph.. Google ScholarDigital Library
    42. Tagliasacchi, A., Alhashim, I., Olson, M., and Zhang, H. 2012. Mean curvature skeletons. Comput. Graph. Forum 31, 5. Google ScholarDigital Library
    43. Yoshizaki, W., Sugiura, Y., Chiou, A. C., Hashimoto, S., Inami, M., Igarashi, T., Akazawa, Y., Kawachi, K., Kagami, S., and Mochimaru, M. 2011. An actuated physical puppet as an input device for controlling a digital manikin. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, ACM, New York, NY, USA, CHI ’11, 637–646. Google ScholarDigital Library
    44. Zhai, S., and Milgram, P. 1998. Quantifying coordination in multiple dof movement and its application to evaluating 6 dof input devices. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, ACM Press/Addison-Wesley Publishing Co., New York, NY, USA, CHI ’98, 320–327. Google ScholarDigital Library


ACM Digital Library Publication:



Overview Page: