“Locomotion skills for simulated quadrupeds” by Coros, Karpathy, Jones, Reveret and Panne

  • ©Stelian Coros, Andrej Karpathy, Ben Jones, Lionel Reveret, and Michiel van de Panne




    Locomotion skills for simulated quadrupeds



    We develop an integrated set of gaits and skills for a physics-based simulation of a quadruped. The motion repertoire for our simulated dog includes walk, trot, pace, canter, transverse gallop, rotary gallop, leaps capable of jumping on-and-off platforms and over obstacles, sitting, lying down, standing up, and getting up from a fall. The controllers use a representation based on gait graphs, a dual leg frame model, a flexible spine model, and the extensive use of internal virtual forces applied via the Jacobian transpose. Optimizations are applied to these control abstractions in order to achieve robust gaits and leaps with desired motion styles. The resulting gaits are evaluated for robustness with respect to push disturbances and the traversal of variable terrain. The simulated motions are also compared to motion data captured from a filmed dog.


    1. Abourachid, A., Herbin, M., Hackert, R., Maes, L., and Martin, V. 2007. Experimental study of coordination patterns during unsteady locomotion in mammals. J. Experimental Biology 210, 366–372.Google ScholarCross Ref
    2. Alexander, R. 1984. The gaits of bipedal and quadrupedal animals. The International Journal of Robotics Research 3, 2, 49–59.Google ScholarCross Ref
    3. Blumberg, B., and Galyean, T. 1995. Multi-level direction of autonomous creatures for real-time virtual environments. In Proc. ACM SIGGRAPH, ACM, 47–54. Google Scholar
    4. Buehler, M., Playter, R., and Raibert, M. 2005. Robots step outside. In Int. Symp. Adaptive Motion of Animals and Machines (AMAM), Ilmenau, Germany, 1–4.Google Scholar
    5. Coros, S., Beaudoin, P., and van de Panne, M. 2010. Generalized biped walking control. ACM Transctions on Graphics 29, 4, Article 130. Google Scholar
    6. de Lasa, M., Mordatch, I., and Hertzmann, A. 2010. Feature-based locomotion controllers. ACM Transactions on Graphics (TOG) 29, 4, Article 131. Google ScholarDigital Library
    7. Faloutsos, P., van de Panne, M., and Terzopoulos, D. 2001. Composable controllers for physics-based character animation. In Proc. ACM SIGGRAPH, 251–260. Google Scholar
    8. Furusho, J., Sano, A., Sakaguchi, M., and Koizumi, E. 2002. Realization of bounce gait in a quadruped robot with articular-joint-type legs. In Proc. IEEE Intl Conf on Robotics and Automation, vol. 1, 697–702.Google Scholar
    9. Gillette, R. L., and Angle, T. C. 2008. Recent developments in canine locomotor analysis: A review. The Veterinary Journal 178, 165–176.Google ScholarCross Ref
    10. Girard, M., and Maciejewski, A. 1985. Computational modeling for the computer animation of legged figures. ACM SIGGRAPH Computer Graphics 19, 3, 263–270. Google ScholarDigital Library
    11. Hecker, C., Raabe, B., Enslow, R. W., DeWeese, J., Maynard, J., and van Prooijen, K. 2008. Real-time motion retargeting to highly varied user-created morphologies. ACM Trans. on Graphics (Proc. SIGGRAPH) 27, 3. Google ScholarDigital Library
    12. Herr, H., and McMahon, T. 2001. A galloping horse model. Intl Journal of Robotics Research 20, 1, 26.Google ScholarCross Ref
    13. Hodgins, J., Wooten, W., Brogan, D., and O’Brien, J. 1995. Animating human athletics. In Proc. ACM SIGGRAPH, 71–78. Google Scholar
    14. Kimura, H., Fukuoka, Y., and Cohen, A. 2007. Adaptive dynamic walking of a quadruped robot on natural ground based on biological concepts. Intl Journal of Robotics Research 26, 5, 475. Google ScholarDigital Library
    15. Kohl, N., and Stone, P. 2004. Policy gradient reinforcement learning for fast quadrupedal locomotion. In Proc. IEEE Intl Conf. on Robotics and Automation, vol. 3, 2619–2624.Google Scholar
    16. Kokkevis, E., Metaxas, D., and Badler, N. 1995. Autonomous Animation and Control of Four-Legged Animals. In Proc. Graphics Interface, 10–17.Google Scholar
    17. Kolter, J., Rodgers, M., and Ng, A. 2008. A control architecture for quadruped locomotion over rough terrain. In Proc. IEEE Intl Conf. on Robotics and Automation, 811–818.Google Scholar
    18. Krasny, D. P., and Orin, D. E. 2004. Generating high-speed dynamic running gaits in a quadruped robot using an evolutionary search. IEEE Trans. on Systems, Man and Cybernetics 34, 4, 1685–1696. Google ScholarDigital Library
    19. Krasny, D., and Orin, D. 2006. A 3D galloping quadruped robot. Climbing and Walking Robots, 467–474.Google Scholar
    20. Kry, P. G., Reveret, L., Faure, F., and Cani, M.-P. 2009. Modal locomotion: Animating virtual characters with natural vibrations. Computer Graphics Forum 28, 2.Google ScholarCross Ref
    21. Laszlo, J. F., van de Panne, M., and Fiume, E. 1996. Limit cycle control and its application to the animation of balancing and walking. In Proc. ACM SIGGRAPH, 155–162. Google Scholar
    22. Lee, Y., Kim, S., and Lee, J. 2010. Data-driven biped control. ACM Transactions on Graphics (TOG) 29, 4, Article 129. Google ScholarDigital Library
    23. Marhefka, D., Orin, D., Schmiedeler, J., and Waldron, K. 2003. Intelligent control of quadruped gallops. IEEE/ASME Trans. on Mechatronics 8, 4, 446–456.Google ScholarCross Ref
    24. Muico, U., Lee, Y., Popović, J., and Popović, Z. 2009. Contact-aware nonlinear control of dynamic characters. ACM Transactions on Graphics (TOG) 28, 3, 1–9. Google ScholarDigital Library
    25. Paul, R. 1981. Robot manipulators: mathematics, programming, and control: the computer control of robot manipulators. The MIT Press. Google Scholar
    26. Playter, R., Buehler, M., and Raibert, M. 2006. BigDog. In Proc. of SPIE, vol. 6230, 62302O.Google Scholar
    27. Poulakakis, I., Smith, J., and Buehler, M. 2005. Modeling and experiments of untethered quadrupedal running with a bounding gait: The Scout II robot. Intl Journal of Robotics Research 24, 4, 239. Google ScholarDigital Library
    28. Pratt, J., Chew, C., Torres, A., Dilworth, P., and Pratt, G. 2001. Virtual model control: An intuitive approach for bipedal locomotion. Int’l J. Robotics Research 20, 2, 129.Google ScholarCross Ref
    29. Raibert, M. H., and Hodgins, J. K. 1991. Animation of dynamic legged locomotion. In Proc. ACM SIGGRAPH, 349–358. Google Scholar
    30. Raibert, M. H. 1986. Legged Robots That Balance. MIT Press. Google Scholar
    31. Ringrose, R. 1996. Self-stabilizing running. PhD thesis, MIT. Google Scholar
    32. Skrba, L., Reveret, L., Hétroy, F., Cani, M., and O’Sullivan, C. 2008. Quadruped animation. Eurographics 2008-State of the Art Reports, 1–17.Google Scholar
    33. Sok, K. W., Kim, M., and Lee, J. 2007. Simulating biped behaviors from human motion data. ACM Trans. on Graphics (Proc. SIGGRAPH) 26, 3, Article 107. Google ScholarDigital Library
    34. Sunada, C., Argaez, D., Dubowsky, S., and Mavroidis, C. 1994. A coordinated jacobian transpose control for mobile multi-limbed robotic systems. In Proc. IEEE Int’l Conf. on Robotics and Automation, 1910–1915.Google Scholar
    35. Torkos, N., and van de Panne, M. 1998. Footprint-based quadruped motion synthesis. In Proc. Graphics Interface, 151–160.Google Scholar
    36. TreT, 2011. Tret – parkour dog from ukraine, http://www.youtube.com/watch?v=pxelh_vm0uc. Accessed on January 9, 2011.Google Scholar
    37. Tsujita, K., Tsuchiya, K., and Onat, A. 2001. Adaptive gait pattern control of a quadruped locomotion robot. In Proc. IEEE Intelligent Robots and Systems, vol. 4, 2318–2325.Google ScholarCross Ref
    38. van de Panne, M. 1996. Parameterized gait synthesis. IEEE Computer Graphics and Applications 16, 2 (March), 40–69. Google ScholarDigital Library
    39. Van Den Bogert, A., Schamhardt, H., and Crowe, A. 1989. Simulation of quadrupedal locomotion using a rigid body model. Journal of biomechanics 22, 1, 33–41.Google ScholarCross Ref
    40. Walter, R. M., and Carrier, D. R. 2007. Ground forces applied by galloping dogs. The Journal of Experimental Biology 210, 208–216.Google ScholarCross Ref
    41. Wampler, K., and Popović, Z. 2009. Optimal gait and form for animal locomotion. ACM Transactions on Graphics (TOG) 28, 3, 1–8. Google ScholarDigital Library
    42. Wong, H., and Orin, D. 1995. Control of a quadruped standing jump over irregular terrain obstacles. Autonomous Robots 1, 2, 111–129.Google ScholarCross Ref
    43. Wu, J., and Popović, Z. 2010. Terrain-adaptive bipedal locomotion control. ACM Transactions on Graphics (TOG) 29, 4, Article 72. Google ScholarDigital Library
    44. Ye, Y., and Liu, C. 2010. Optimal feedback control for character animation using an abstract model. ACM Transactions on Graphics (TOG) 29, 4, Article 74. Google ScholarDigital Library
    45. Yin, K., Loken, K., and van de Panne, M. 2007. SIMBICON: Simple biped locomotion control. ACM Trans. on Graphics (Proc. SIGGRAPH) 26, 3, Article 105. Google ScholarDigital Library
    46. Zucker, M., Bagnell, J., Atkeson, C., and Kuffner, J. 2010. An optimization approach to rough terrain locomotion. In Proc. IEEE Intl Conf. on Robotics and Automation, 3589–3595.Google Scholar

ACM Digital Library Publication:

Overview Page: