“Integrable PolyVector fields”

  • ©Olga Diamanti, Amir Vaxman, Daniele Panozzo, and Olga Sorkine-Hornung

Conference:


Type(s):


Title:

    Integrable PolyVector fields

Session/Category Title:   Geometry Field Trip


Presenter(s)/Author(s):


Moderator(s):



Abstract:


    We present a framework for designing curl-free tangent vector fields on discrete surfaces. Such vector fields are gradients of locally-defined scalar functions, and this property is beneficial for creating surface parameterizations, since the gradients of the parameterization coordinate functions are then exactly aligned with the designed fields. We introduce a novel definition for discrete curl between unordered sets of vectors (PolyVectors), and devise a curl-eliminating continuous optimization that is independent of the matchings between them. Our algorithm naturally places the singularities required to satisfy the user-provided alignment constraints, and our fields are the gradients of an inversion-free parameterization by design.

References:


    1. Alliez, P., Cohen-Steiner, D., Devillers, O., Lévy, B., and Desbrun, M. 2003. Anisotropic polygonal remeshing. ACM Trans. Graph. 22, 3, 485–493. Google ScholarDigital Library
    2. Azencot, O., Ben-Chen, M., Chazal, F., and Ovsjanikov, M. 2013. An operator approach to tangent vector field processing. Comput. Graph. Forum 32, 5, 73–82. Google ScholarDigital Library
    3. Bommes, D., Zimmer, H., and Kobbelt, L. 2009. Mixed-integer quadrangulation. ACM Trans. Graph. 28, 3, 77:1–77:10. Google ScholarDigital Library
    4. Bommes, D., Campen, M., Ebke, H.-C., Alliez, P., and Kobbelt, L. 2013. Integer-grid maps for reliable quad meshing. ACM Trans. Graph. 32, 4, 98:1–98:12. Google ScholarDigital Library
    5. Bommes, D., Lévy, B., Pietroni, N., Puppo, E., Silva, C., Tarini, M., and Zorin, D. 2013. Quad-mesh generation and processing: A survey. Computer Graphics Forum 32, 6, 51–76. Google ScholarDigital Library
    6. Botsch, M., Kobbelt, L., Pauly, M., Alliez, P., and Lévy, B. 2010. Polygon Mesh Processing. AK Peters.Google Scholar
    7. Campen, M., and Kobbelt, L. 2014. Dual strip weaving: Interactive design of quad layouts using elastica strips. ACM Trans. Graph. 33, 6, 183:1–183:10. Google ScholarDigital Library
    8. Crane, K., Desbrun, M., and Schröder, P. 2010. Trivial connections on discrete surfaces. Comput. Graph. Forum 29, 5.Google ScholarCross Ref
    9. Diamanti, O., Vaxman, A., Panozzo, D., and Sorkine-Hornung, O. 2014. Designing N-PolyVector fields with complex polynomials. Computer Graphics Forum 33, 5, 1–11. Google ScholarDigital Library
    10. Dong, S., Bremer, P.-T., Garland, M., Pascucci, V., and Hart, J. C. 2006. Spectral surface quadrangulation. ACM Trans. Graph. 25, 3 (July), 1057–1066. Google ScholarDigital Library
    11. Ebke, H.-C., Bommes, D., Campen, M., and Kobbelt, L. 2013. QEx: Robust quad mesh extraction. ACM Trans. Graph. 32, 6, 168:1–168:10. Google ScholarDigital Library
    12. Ebke, H.-C., Campen, M., Bommes, D., and Kobbelt, L. 2014. Level-of-detail quad meshing. ACM Trans. Graph. 33, 6, 184:1–184:11. Google ScholarDigital Library
    13. Fisher, M., Schröder, P., Desbrun, M., and Hoppe, H. 2007. Design of tangent vector fields. ACM Trans. Graph. 26, 3. Google ScholarDigital Library
    14. Hertzmann, A., and Zorin, D. 2000. Illustrating smooth surfaces. In Proc. ACM SIGGRAPH, 517–526. Google ScholarDigital Library
    15. Kälberer, F., Nieser, M., and Polthier, K. 2007. QuadCover — surface parameterization using branched coverings. Computer Graphics Forum 26, 3, 375–384.Google ScholarCross Ref
    16. Knöppel, F., Crane, K., Pinkall, U., and Schröder, P. 2013. Globally optimal direction fields. ACM Trans. Graph. 32, 4. Google ScholarDigital Library
    17. Kuzmin, A., Luisier, M., and Schenk, O. 2013. Fast methods for computing selected elements of the Green’s function in massively parallel nanoelectronic device simulations. In Proc. Euro-Par, 533–544. Google ScholarDigital Library
    18. Lefebvre, S., and Hoppe, H. 2006. Appearance-space texture synthesis. ACM Trans. Graph. 25, 3, 541–548. Google ScholarDigital Library
    19. Li, Y., Bao, F., Zhang, E., Kobayashi, Y., and Wonka, P. 2011. Geometry synthesis on surfaces using field-guided shape grammars. IEEE Trans. Vis. Comput. Graph. 17, 2, 231–243. Google ScholarDigital Library
    20. Ling, R., Huang, J., Jüttler, B., Sun, F., Bao, H., and Wang, W. 2014. Spectral quadrangulation with feature curve alignment and element size control. ACM Trans. Graph. 34, 1. Google ScholarDigital Library
    21. Lipman, Y. 2012. Bounded distortion mapping spaces for triangular meshes. ACM Trans. Graph. 31, 4, 108:1–108:13. Google ScholarDigital Library
    22. Liu, Y., Xu, W., Wang, J., Zhu, L., Guo, B., Chen, F., and Wang, G. 2011. General planar quadrilateral mesh design using conjugate direction field. ACM Trans. Graph. 30, 6. Google ScholarDigital Library
    23. Marinov, M., and Kobbelt, L. 2004. Direct anisotropic quad-dominant remeshing. In Proc. Pacific Graphics, 207–216. Google ScholarDigital Library
    24. Myles, A., and Zorin, D. 2012. Global parametrization by incremental flattening. ACM Trans. Graph. 31, 4. Google ScholarDigital Library
    25. Myles, A., and Zorin, D. 2013. Controlled-distortion constrained global parametrization. ACM Trans. Graph. 32, 4. Google ScholarDigital Library
    26. Myles, A., Pietroni, N., and Zorin, D. 2014. Robust field-aligned global parametrization. ACM Trans. Graph. 33, 4. Google ScholarDigital Library
    27. Palacios, J., and Zhang, E. 2007. Rotational symmetry field design on surfaces. ACM Trans. Graph. 26, 3. Google ScholarDigital Library
    28. Panozzo, D., Lipman, Y., Puppo, E., and Zorin, D. 2012. Fields on symmetric surfaces. ACM Trans. Graph. 31, 4. Google ScholarDigital Library
    29. Panozzo, D., Puppo, E., Tarini, M., and Sorkine-Hornung, O. 2014. Frame fields: Anisotropic and non-orthogonal cross fields. ACM Trans. Graph. 33, 4, 134:1–134:11. Google ScholarDigital Library
    30. Polthier, K., and Preuss, E. 2003. Identifying vector field singularities using a discrete Hodge decomposition. In Visualization and Mathematics III, 113–134.Google Scholar
    31. Ray, N., Li, W. C., Lévy, B., Sheffer, A., and Alliez, P. 2006. Periodic global parameterization. ACM Trans. Graph. 25, 4, 1460–1485. Google ScholarDigital Library
    32. Ray, N., Vallet, B., Li, W. C., and Lévy, B. 2008. N-symmetry direction field design. ACM Trans. Graph. 27, 2. Google ScholarDigital Library
    33. Ray, N., Vallet, B., Alonso, L., and Lévy, B. 2009. Geometry-aware direction field processing. ACM Trans. Graph. 29, 1, 1:1–1:11. Google ScholarDigital Library
    34. Schüller, C., Kavan, L., Panozzo, D., and Sorkine-Hornung, O. 2013. Locally injective mappings. Computer Graphics Forum 32, 5, 125–135. Google ScholarDigital Library
    35. Takayama, K., Panozzo, D., Sorkine-Hornung, A., and Sorkine-Hornung, O. 2013. Sketch-based generation and editing of quad meshes. ACM Trans. Graph. 32, 4, 97:1–97:8. Google ScholarDigital Library
    36. Weber, O., and Zorin, D. 2014. Locally injective parametrization with arbitrary fixed boundaries. ACM Trans. Graph. 33, 4 (July), 75:1–75:12. Google ScholarDigital Library
    37. Zhang, E., Mischaikow, K., and Turk, G. 2006. Vector field design on surfaces. ACM Trans. Graph. 25, 4, 1294–1326. Google ScholarDigital Library
    38. Zhang, M., Huang, J., Liu, X., and Bao, H. 2010. A wave-based anisotropic quadrangulation method. ACM Trans. Graph. 29, 4, 118:1–118:8. Google ScholarDigital Library


ACM Digital Library Publication:



Overview Page: