“Generalized biped walking control” by Coros, Beaudoin and Panne

  • ©

Conference:


Type(s):


Title:

    Generalized biped walking control

Presenter(s)/Author(s):



Abstract:


    We present a control strategy for physically-simulated walking motions that generalizes well across gait parameters, motion styles, character proportions, and a variety of skills. The control is realtime, requires no character-specific or motion-specific tuning, is robust to disturbances, and is simple to compute. The method works by integrating tracking, using proportional-derivative control; foot placement, using an inverted pendulum model; and adjustments for gravity and velocity errors, using Jacobian transpose control. High-level gait parameters allow for forwards-and-backwards walking, various walking speeds, turns, walk-to-stop, idling, and stop-to-walk behaviors. Character proportions and motion styles can be authored interactively, with edits resulting in the instant realization of a suitable controller. The control is further shown to generalize across a variety of walking-related skills, including picking up objects placed at any height, lifting and walking with heavy crates, pushing and pulling crates, stepping over obstacles, ducking under obstacles, and climbing steps.

References:


    1. Abe, Y., da Silva, M., and Popović, J. 2007. Multiobjective control with frictional contacts. In Proc. ACM SIGGRAPH/EG Symposium on Computer Animation, 249–258. Google ScholarDigital Library
    2. Coros, S., Beaudoin, P., Yin, K., and van de Panne, M. 2008. Synthesis of constrained walking skills. ACM Trans. on Graphics (Proc. SIGGRAPH ASIA) 27, 5, Article 113. Google ScholarDigital Library
    3. Coros, S., Beaudoin, P., and van de Panne, M. 2009. Robust task-based control policies for physics-based characters. ACM Trans. on Graphics (Proc. SIGGRAPH ASIA) 28, 5, Article 170. Google ScholarDigital Library
    4. da Silva, M., Abe, Y., and Popović, J. 2008. Interactive simulation of stylized human locomotion. ACM Trans. on Graphics (Proc. SIGGRAPH) 27, 3, Article 82. Google ScholarDigital Library
    5. Hecker, C., Raabe, B., Enslow, R. W., DeWeese, J., Maynard, J., and van Prooijen, K. 2008. Real-time motion retargeting to highly varied user-created morphologies. ACM Trans. on Graphics (Proc. SIGGRAPH) 27, 3. Google ScholarDigital Library
    6. Hodgins, J. K., and Pollard, N. S. 1997. Adapting simulated behaviors for new characters. In Proc. ACM SIGGRAPH, 153–162. Google ScholarDigital Library
    7. Jain, S., Ye, Y., and Liu, C. K. 2009. Optimization-based interactive motion synthesis. ACM Trans. on Graphics 28, 1, 1–10. Google ScholarDigital Library
    8. Kajita, S., Kanehiro, F., Kaneko, K., Fujiwara, K., Harada, K., Yokoi, K., and Hirukawa, H. 2003. Biped walking pattern generation by using preview control of zero-moment point. In Proc. IEEE Int’l Conf. on Robotics and Automation.Google Scholar
    9. Kulpa, R., Multon, F., and Arnaldi, B. 2005. Morphology-independent representation of motions for interactive human-like animation. In Computer Graphics Forum, vol. 24, 343–352.Google ScholarCross Ref
    10. Laszlo, J. F., van de Panne, M., and Fiume, E. 1996. Limit cycle control and its application to the animation of balancing and walking. In Proc. ACM SIGGRAPH, 155–162. Google ScholarDigital Library
    11. Macchietto, A., Zordan, V., and Shelton, C. R. 2009. Momentum control for balance. ACM Trans. on Graphics (Proc. SIGGRAPH) 28, 3. Google ScholarDigital Library
    12. Miura, H., and Shimoyama, I. 1984. Dynamic walk of a biped. Int’l J. of Robotics Research 3, 2.Google ScholarCross Ref
    13. Morimoto, J., Atkeson, C. G., Endo, G., and Cheng, G. 2007. Improving humanoid locomotive performance with learnt approximated dynamics via guassian processes for regression. In Proc. IEEE Int’l Conf. on Robotics and Automation.Google Scholar
    14. Muico, U., Lee, Y., Popovic’, J., and Popovic’, Z. 2009. Contact-aware nonlinear control of dynamic characters. ACM Trans. on Graphics (Proc. SIGGRAPH) 28, 3, Article 81. Google ScholarDigital Library
    15. ODE. Open dynamics engine, http://www.ode.org/.Google Scholar
    16. Pratt, J. E., and Drakunov, S. V. 2007. Derivation and application of a conserved orbital energy for the inverted pendulum bipedal walking model. In Proc. IEEE Int’l Conf. on Robotics and Automation.Google Scholar
    17. Pratt, J. E., and Tedrake, R. 2006. Velocity based stability margins for fast bipedal walking. In Fast Motions in Biomechanics and Robots.Google Scholar
    18. Pratt, J., Chew, C., Torres, A., Dilworth, P., and Pratt, G. 2001. Virtual model control: An intuitive approach for bipedal locomotion. Int’l J. Robotics Research 20, 2, 129.Google ScholarCross Ref
    19. Raibert, M. H., and Hodgins, J. K. 1991. Animation of dynamic legged locomotion. In Proc. ACM SIGGRAPH, 349–358. Google ScholarDigital Library
    20. Raibert, M. H. 1986. Legged Robots That Balance. MIT Press. Google ScholarDigital Library
    21. Sharon, D., and van de Panne, M. 2005. Synthesis of controllers for stylized planar bipedal walking. In Proc. IEEE Int’l Conf. on Robotics and Automation.Google Scholar
    22. Sok, K. W., Kim, M., and Lee, J. 2007. Simulating biped behaviors from human motion data. ACM Trans. on Graphics (Proc. SIGGRAPH) 26, 3, Article 107. Google ScholarDigital Library
    23. Sunada, C., Argaez, D., Dubowsky, S., and Mavroidis, C. 1994. A coordinated jacobian transpose control for mobile multi-limbed robotic systems. In Proc. IEEE Int’l Conf. on Robotics and Automation, 1910–1915.Google Scholar
    24. Takenaka, T., Matsumoto, T., and Yoshiike, T. 2009. Real time motion generation and control for biped robot, first report: Walking gait pattern generation. In Proc. IEEE/RSJ Int’l Conf. on Intelligent Robots and Systems. Google ScholarDigital Library
    25. Tedrake, R., Zhang, T., and Seung, H. 2004. Stochastic policy gradient reinforcement learning on a simple 3D biped. In Proc. Int’l Conf. on Intelligent Robots and Systems, vol. 3.Google Scholar
    26. Tsai, Y.-Y., Lin, W.-C., Cheng, K. B., Lee, J., and Lee, T.-Y. 2010. Real-time physics-based 3d biped character animation using an inverted pendulum model. IEEE Trans. on Visualization and Computer Graphics. Google ScholarDigital Library
    27. Wang, J., Fleet, D. J., and Hertzmann, A. 2009. Optimizing walking controllers. ACM Trans. on Graphics (Proc. SIGGRAPH Asia). Google ScholarDigital Library
    28. Yin, K., Loken, K., and van de Panne, M. 2007. SIMBICON: Simple biped locomotion control. ACM Trans. on Graphics (Proc. SIGGRAPH) 26, 3, Article 105. Google ScholarDigital Library
    29. Yin, K., Coros, S., Beaudoin, P., and van de Panne, M. 2008. Continuation methods for adapting simulated skills. ACM Transactions Graph. (Proc. SIGGRAPH) 27, 3. Google ScholarDigital Library


ACM Digital Library Publication:



Overview Page: