“Design and fabrication of flexible rod meshes” by Rodríguez, Thomaszewski, Coros, Bickel, Canabal, et al. …

  • ©


Abstract:


    We present a computational tool for fabrication-oriented design of flexible rod meshes. Given a deformable surface and a set of deformed poses as input, our method automatically computes a printable rod mesh that, once manufactured, closely matches the input poses under the same boundary conditions. The core of our method is formed by an optimization scheme that adjusts the cross-sectional profiles of the rods and their rest centerline in order to best approximate the target deformations. This approach allows us to locally control the bending and stretching resistance of the surface with a single material, yielding high design flexibility and low fabrication cost.

References:


    1. Bächer, M., Bickel, B., James, D. L., and Pfister, H. 2012. Fabricating articulated characters from skinned meshes. ACM Trans. Graph. 31, 4, 47:1–47:9. Google ScholarDigital Library
    2. Bacher, M., Whiting, E., Bickel, B., and Sorkine-Hornung, O. 2014. Spin-it: Optimizing moment of inertia for spinnable objects. ACM Trans. Graph. 33, 4. Google ScholarDigital Library
    3. Barbic, J., and Zhao, Y. 2011. Real-time large-deformation substructuring. Proc. of ACM SIGGRAPH. Google ScholarDigital Library
    4. Bergou, M., Wardetzky, M., Robinson, S., Audoly, B., and Grinspun, E. 2008. Discrete elastic rods. Proc. of ACM SIGGRAPH. Google ScholarDigital Library
    5. Bergou, M., Audoly, B., Vouga, E., Wardetzky, M., and Grinspun, E. 2010. Discrete viscous threads. Proc. of ACM SIGGRAPH. Google ScholarDigital Library
    6. Bertails, F., Audoly, B., Cani, M.-P., Querleux, B., Leroy, F., and Lévêque, J.-L. 2006. Super-helices for predicting the dynamics of natural hair. In ACM SIGGRAPH 2006 Papers, ACM, New York, NY, USA, SIGGRAPH ’06, 1180–1187. Google ScholarDigital Library
    7. Bickel, B., Bächer, M., Otaduy, M. A., Matusik, W., Pfister, H., and Gross, M. 2009. Capture and modeling of non-linear heterogeneous soft tissue. ACM Trans. Graph. 28, 3 (July), 89:1–89:9. Google ScholarDigital Library
    8. Bickel, B., Bächer, M., Otaduy, M. A., Lee, H. R., Pfister, H., Gross, M., and Matusik, W. 2010. Design and fabrication of materials with desired deformation behavior. ACM Trans. Graph. 29, 4, 63:1–63:10. Google ScholarDigital Library
    9. Bickel, B., Kaufmann, P., Skouras, M., Thomaszewski, B., Bradley, D., Beeler, T., Jackson, P., Marschner, S., Matusik, W., and Gross, M. 2012. Physical face cloning. ACM Trans. Graph. 31, 4, 118:1–118:10. Google ScholarDigital Library
    10. Calì, J., Calian, D. A., Amati, C., Kleinberger, R., Steed, A., Kautz, J., and Weyrich, T. 2012. 3d-printing of non-assembly, articulated models. ACM Trans. Graph. 31, 6 (Nov.), 130:1–130:8. Google ScholarDigital Library
    11. Casati, R., and Bertails-Descoubes, F. 2013. Super space clothoids. ACM Trans. Graph. 32, 4, 48:1–48:12. Google ScholarDigital Library
    12. Ceylan, D., Li, W., Mitra, N. J., Agrawala, M., and Pauly, M. 2013. Designing and fabricating mechanical automata from mocap sequences. ACM Trans. Graph. 32, 6, 186. Google ScholarDigital Library
    13. Chen, D., Levin, D. I. W., Didyk, P., Sitthi-Amorn, P., and Matusik, W. 2013. Spec2fab: A reducer-tuner model for translating specifications to 3d prints. ACM Trans. Graph. 32, 4, 135:1–135:10. Google ScholarDigital Library
    14. Chen, X., Zheng, C., Xu, W., and Zhou, K. 2014. An asymptotic numerical method for inverse elastic shape design. ACM Trans. Graph. 33, 3. Google ScholarDigital Library
    15. Coros, S., Martin, S., Thomaszewski, B., Schumacher, C., Sumner, R., and Gross, M. 2012. Deformable objects alive! ACM Trans. Graph. 31, 4 (July), 69:1–69:9. Google ScholarDigital Library
    16. Coros, S., Thomaszewski, B., Noris, G., Sueda, S., Forberg, M., Sumner, R. W., Matusik, W., and Bickel, B. 2013. Computational design of mechanical characters. ACM Trans. Graph. 32, 4, 83:1–83:12. Google ScholarDigital Library
    17. Derouet-Jourdan, A., Bertails-Descoubes, F., and Thollot, J. 2010. Stable inverse dynamic curves. ACM Trans. Graph. 29, 6, 137:1–137:10. Google ScholarDigital Library
    18. Derouet-Jourdan, A., Bertails-Descoubes, F., Daviet, G., and Thollot, J. 2013. Inverse dynamic hair modeling with frictional contact. ACM Trans. Graph. 32, 6, 159:1–159:10. Google ScholarDigital Library
    19. Garg, A., Sageman-Furmas, A., Deng, B., Yue, Y., Grinspun, E., Pauly, M., and Wardetzky, M. 2014. Wire mesh design. ACM Trans. Graph. 33, 3. Google ScholarDigital Library
    20. Hadap, S. 2006. Oriented strands: Dynamics of stiff multi-body system. In Proceedings of the 2006 ACM SIGGRAPH/ Eurographics Symposium on Computer Animation, Eurographics Association, Aire-la-Ville, Switzerland, Switzerland, SCA ’06, 91–100. Google ScholarDigital Library
    21. Iben, H., Meyer, M., Petrovic, L., Soares, O., Anderson, J., and Witkin, A. 2013. Artistic simulation of curly hair. In Proceedings of the 12th ACM SIGGRAPH/Eurographics Symposium on Computer Animation, ACM, New York, NY, USA, SCA ’13, 63–71. Google ScholarDigital Library
    22. Kondo, R., Kanai, T., and Anjyo, K.-I. 2005. Directable animation of elastic objects. In Proceedings of the 2005 ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA ’05), 127–134. Google ScholarDigital Library
    23. Li, S., Huang, J., de Goes, F., Jin, X., Bao, H., and Desbrun, M. 2014. Space-time editing of elastic motion through material optimization and reduction. ACM Trans. Graph. 33, 3. Google ScholarDigital Library
    24. Martin, S., Thomaszewski, B., Grinspun, E., and Gross, M. 2011. Example-based elastic materials. ACM Trans. Graph. 30, 4 (July), 72:1–72:8. Google ScholarDigital Library
    25. Miguel, E., Bradley, D., Thomaszewski, B., Bickel, B., Matusik, W., Otaduy, M. A., and Marschner, S. 2012. Data-driven estimation of cloth simulation models. Computer Graphics Forum (Proc. of Eurographics) 31, 2 (may). Google ScholarDigital Library
    26. Müller, M., Heidelberger, B., Teschner, M., and Gross, M. 2005. Meshless deformations based on shape matching. Proc. of ACM SIGGRAPH, 471–478. Google ScholarDigital Library
    27. Pai, D. K. 2002. Strands: Interactive simulation of thin solids using cosserat models. Proc. of Eurographics.Google ScholarCross Ref
    28. Prévost, R., Whiting, E., Lefebvre, S., and Sorkine-Hornung, O. 2013. Make it stand: Balancing shapes for 3d fabrication. ACM Trans. Graph. 32, 4, 81:1–81:10. Google ScholarDigital Library
    29. Rosenblum, R. E., Carlson, W. E., and E., T. 1991. Simulating the structure and dynamics of human hair: modelling, rendering and animation. J. Vis. and Comput. Anim. 2.Google Scholar
    30. Schumacher, C., Thomaszewski, B., Coros, S., Martin, S., Sumner, R., and Gross, M. 2012. Efficient simulation of example-based materials. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation, Eurographics Association, Aire-la-Ville, Switzerland, Switzerland, SCA ’12, 1–8. Google ScholarDigital Library
    31. Selle, A., Lentine, M., and Fedkiw, R. 2008. A mass spring model for hair simulation. ACM Trans. Graph. 27, 3 (Aug.), 64:1–64:11. Google ScholarDigital Library
    32. Skouras, M., Thomaszewski, B., Bickel, B., and Gross, M. 2012. Computational design of rubber balloons. Comp. Graph. Forum 31, 835–844. Google ScholarDigital Library
    33. Skouras, M., Thomaszewski, B., Coros, S., Bickel, B., and Gross, M. 2013. Computational design of actuated deformable characters. ACM Trans. Graph. 32, 4, 82:1–82:10. Google ScholarDigital Library
    34. Song, P., Fu, C.-W., Goswami, P., Zheng, J., Mitra, N. J., and Cohen-Or, D. 2013. Reciprocal frame structures made easy. ACM Transactions on Graphics 32, 4. Google ScholarDigital Library
    35. Spillmann, J., and Teschner, M. 2007. Corde: Cosserat rod elements for the dynamic simulation of one-dimensional elastic objects. In Proceedings of the 2007 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, Eurographics Association, Aire-la-Ville, Switzerland, Switzerland, SCA ’07, 63–72. Google ScholarDigital Library
    36. Spillmann, J., and Teschner, M. 2009. Cosserat nets. IEEE Transactions on Visualization and Computer Graphics 15, 2, 325–338. Google ScholarDigital Library
    37. Thomaszewski, B., Coros, S., Gauge, D., Megaro, V., Grinspun, E., and Gross, M. 2014. Computational design of linkage-based characters. ACM Trans. Graph. 33, 4. Google ScholarDigital Library
    38. Twigg, C. D., and Kačić-Alesić, Z. 2011. Optimization for sag-free simulations. In Proceedings of the 2011 ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA ’11, 225–236. Google ScholarDigital Library
    39. Umetani, N., Kaufman, D. M., Igarashi, T., and Grinspun, E. 2011. Sensitive couture for interactive garment modeling and editing. ACM Trans. Graph. 30, 4, 90:1–90:12. Google ScholarDigital Library
    40. Valette, S., and Chassery, J.-M. 2004. Approximated centroidal voronoi diagrams for uniform polygonal mesh coarsening. Computer Graphics Forum 23, 3, 381–389.Google ScholarCross Ref
    41. Vidimče, K., Wang, S.-P., Ragan-Kelley, J., and Matusik, W. 2013. Openfab: A programmable pipeline for multimaterial fabrication. ACM Trans. Graph. 32, 4, 136:1–136:12. Google ScholarDigital Library
    42. Volino, P., and Magnenat-Thalmann, N. 2007. Stop-and-go cloth draping. Vis. Comput. 23, 9, 69–677. Google ScholarDigital Library
    43. Wang, W., Wang, T. Y., Yang, Z., Liu, L., Tong, X., Tong, W., Deng, J., Chen, F., and Liu, X. 2013. Cost-effective printing of 3d objects with skin-frame structures. ACM Trans. Graph. 32, 6, 177:1–177:10. Google ScholarDigital Library
    44. Xu, H., Li, Y., Chen, Y., and Barbic, J. 2015. Interactive material design using model reduction. ACM Transactions of Graphics 34, 18. Google ScholarDigital Library


ACM Digital Library Publication:



Overview Page: