“Design and fabrication of materials with desired deformation behavior” by Bickel, Bächer, Otaduy, Lee, Pfister, et al. …

  • ©Bernd Bickel, Moritz Bächer, Miguel A. Otaduy, Hyunho Richard Lee, Hanspeter Pfister, Markus Gross, and Wojciech Matusik




    Design and fabrication of materials with desired deformation behavior



    This paper introduces a data-driven process for designing and fabricating materials with desired deformation behavior. Our process starts with measuring deformation properties of base materials. For each base material we acquire a set of example deformations, and we represent the material as a non-linear stress-strain relationship in a finite-element model. We have validated our material measurement process by comparing simulations of arbitrary stacks of base materials with measured deformations of fabricated material stacks. After material measurement, our process continues with designing stacked layers of base materials. We introduce an optimization process that finds the best combination of stacked layers that meets a user’s criteria specified by example deformations. Our algorithm employs a number of strategies to prune poor solutions from the combinatorial search space. We demonstrate the complete process by designing and fabricating objects with complex heterogeneous materials using modern multi-material 3D printers.


    1. Barbiĉ, J., and James, D. 2005. Real-time subspace integration for St. Venant-Kirchhoff deformable models. ACM Trans. Graph. 24, 3 (Aug.), 982–990. 2 Google ScholarDigital Library
    2. Bathe, K. J. 1995. Finite Element Procedures. Prentice Hall. 3Google Scholar
    3. Becker, M., and Teschner, M. 2007. Robust and efficient estimation of elasticity parameters using the linear finite element method. In SimVis, 15–28. 2Google Scholar
    4. Bendsoe, M. P., and Sigmund, O. 2003. Topology Optimization. Springer Berlin. 2Google Scholar
    5. Bickel, B., Bächer, M., Otaduy, M. A., Matusik, W., Pfister, H., and Gross, M. 2009. Capture and modeling of non-linear heterogeneous soft tissue. ACM Trans. Graph. 28, 3 (July), 89:1–89:9. 2, 3, 3, 3, 4 Google ScholarDigital Library
    6. DiLorenzo, P. C., Zordan, V. B., and Sanders, B. L. 2008. Laughing out loud: Control for modeling anatomically inspired laughter using audio. ACM Trans. Graph. 27, 5 (Dec.), 125:1–125:8. 2 Google ScholarDigital Library
    7. Hiller, J., and Lipson, H. 2009. Design and analysis of digital materials for physical 3d voxel printing. Rapid Prototyping Journal 15, 137–149. 2Google ScholarCross Ref
    8. James, D. L., and Pai, D. K. 1999. Artdefo – accurate real time deformable objects. In Proc. of SIGGRAPH 99, Computer Graphics Proc., 65–72. 2 Google ScholarDigital Library
    9. Kajberg, J., and Lindkvist, G. 2004. Characterisation of materials subjected to large strains by inverse modelling based on in-plane displacement fields. IJSS 41, 13, 3439–3459. 2Google ScholarCross Ref
    10. Kauer, M., Vuskovic, V., Dual, J., Szekely, G., and Bajka, M. 2002. Inverse finite element characterization of soft tissues. Medical Image Analysis 6, 3, 257–287. 2Google ScholarCross Ref
    11. Kharevych, L., Mullen, P., Owhadi, H., and Desbrun, M. 2009. Numerical coarsening of inhomogeneous elastic materials. ACM Trans. Graph. 28, 3 (July), 51:1–51:8. 1, 2 Google ScholarDigital Library
    12. Kicinger, R., Arciszewski, T., and Jong, K. D. 2005. Evolutionary computation and structural design: A survey of the state-of-the-art. Comput. Struct. 83, 23–24, 1943–1978. 2 Google ScholarDigital Library
    13. Koch, R. M., Gross, M. H., Carls, F. R., von Büren, D. F., Fankhauser, G., and Parish, Y. 1996. Simulating facial surgery using finite element methods. In Proc. of SIGGRAPH 96, Computer Graphics Proc., 421–428. 2 Google ScholarDigital Library
    14. Land, A. H., and Doig, A. G. 1960. An automatic method of solving discrete programming problems. Econometrica 28, 3, 497–520. 5.2Google ScholarCross Ref
    15. Lang, J., Pai, D. K., and Woodham, R. J. 2002. Acquisition of elastic models for interactive simulation. IJRR 21, 8, 713–733. 2Google ScholarCross Ref
    16. Lee, S.-H., and Terzopoulos, D. 2006. Heads up!: biome-chanical modeling and neuromuscular control of the neck. ACM Trans. Graph 25, 3 (July), 1188–1198. 2 Google ScholarDigital Library
    17. Lee, S.-H., Sifakis, E., and Terzopoulos, D. 2009. Comprehensive biomechanical modeling and simulation of the upper body. ACM Trans. Graph. 28, 4 (Aug.), 99:1–99:17. 2 Google ScholarDigital Library
    18. Lund, E., and Stegmann, J. 2005. On structural optimization of composite shell structures using a discrete constitutive parameterization. Wind Energy 8, 109–124. 5.2Google ScholarCross Ref
    19. Magnenat-Thalmann, N., Kalra, P., Lévêque, J. L., Bazin, R., Batisse, D., and Queleux, B. 2002. A computational skin model: fold and wrinkle formation. IEEE Trans. on Information Technology in Biomedicine 6, 4, 317–323. 2 Google ScholarDigital Library
    20. Mikolajczyk, K., and Schmid, C. 2004. Scale & affine invariant interest point detectors. IJCV 60, 1, 63–86. 6 Google ScholarDigital Library
    21. Mitani, J., and Suzuki, H. 2004. Making papercraft toys from meshes using strip-based approximate unfolding. ACM Trans. Graph. 23, 3 (Aug.), 259–263. 1 Google ScholarDigital Library
    22. Mori, Y., and Igarashi, T. 2007. Plushie: An interactive design system for plush toys. ACM Trans. Graph. 26, 3 (July), 45:1–45:8. 1 Google ScholarDigital Library
    23. Müller, M., and Gross, M. H. 2004. Interactive virtual materials. In Graphics Interface 2004, 239–246. 3 Google ScholarDigital Library
    24. Nealen, A., Mller, M., Keiser, R., Boxerman, E., and Carlson, M. 2006. Physically based deformable models in computer graphics. Computer Graphics Forum 25, 4 (Dec.), 809–836. 2Google ScholarCross Ref
    25. Nesme, M., Kry, P. G., Jeřábková, L., and Faure, F. 2009. Preserving topology and elasticity for embedded deformable models. ACM Trans. Graph. 28, 3 (July), 52:1–52:9. 2 Google ScholarDigital Library
    26. Neumaier, A., and Pownuk, A. 2007. Linear systems with large uncertainties with applications to truss structures. Reliable Computing 13, 149–172. 5.2Google ScholarCross Ref
    27. OBJET. Connex500 Multi-Material 3D Printing System. http://www.objet.com/3D-Printer/Connex500/.1Google Scholar
    28. O’Brien, J. F., and Hodgins, J. K. 1999. Graphical modeling and animation of brittle fracture. In Proc. of SIGGRAPH 99, Computer Graphics Proc., 137–146. 2 Google ScholarDigital Library
    29. Ogden, R. W. 1997. Non-Linear Elastic Deformations. Courier Dover Publications. 2Google Scholar
    30. Okabe, H., Imaoka, H., Tomiha, T., and Niwaya, H. 1992. Three dimensional apparel cad system. In Computer Graphics (Proc. of SIGGRAPH 92), 105–110. 1 Google ScholarDigital Library
    31. Pai, D. K., van den Doel, K., James, D. L., Lang, J., Lloyd, J. E., Richmond, J. L., and Yau, S. H. 2001. Scanning physical interaction behavior of 3d objects. In Proc. of ACM SIGGRAPH 2001, Computer Graphics Proc., 87–96. 2 Google ScholarDigital Library
    32. Rebonato, R., and Jäckel, P. 1999. The most general methodology to create a valid correlation matrix for risk management and option pricing purposes. Tech. rep., Quantitative Research Centre, NatWest Group. 4Google Scholar
    33. Schnur, D. S., and Zabaras, N. 1992. An inverse method for determining elastic material properties and a material interface. International Journal for Numerical Methods in Engineering 33, 10, 2039–2057. 2Google ScholarCross Ref
    34. Schoner, J. L., Lang, J., and Seidel, H.-P. 2004. Measurement-based interactive simulation of viscoelastic solids. Computer Graphics Forum 23, 3 (Sept.), 547–556. 2Google ScholarCross Ref
    35. Sifakis, E., Neverov, I., and Fedkiw, R. 2005. Automatic determination of facial muscle activations from sparse motion capture marker data. ACM Trans. Graph 24, 3 (Aug.), 417–425. 2 Google ScholarDigital Library
    36. Sueda, S., Kaufman, A., and Pai, D. K. 2008. Musculotendon simulation for hand animation. ACM Trans. Graph. 27, 3 (Aug.), 83:1–83:8. 2 Google ScholarDigital Library
    37. Svoboda, T., Martinec, D., and Pajdla, T. 2005. A convenient multi-camera self-calibration for virtual environments. PRESENCE: Teleoperators and Virtual Environments 14, 4 (August), 407–422. 6 Google ScholarDigital Library
    38. Teran, J., Sifakis, E., Blemker, S. S., Ng-Thow-Hing, V., Lau, C., and Fedkiw, R. 2005. Creating and simulating skeletal muscle from the visible human data set. IEEE TVCG 11, 3 (May/June), 317–328. 2 Google ScholarDigital Library
    39. Terzopoulos, D., Platt, J., Barr, A., and Fleischer, K. 1987. Elastically deformable models. In Computer Graphics (Proc. of SIGGRAPH 87), 205–214. 2 Google ScholarDigital Library
    40. Terzopoulus, D., and Waters, K. 1993. Analysis and synthesis of facial image sequences using physical and anatomical models. IEEE Trans. on PAMI 14, 569–579. 2 Google ScholarDigital Library
    41. Weyrich, T., Peers, P., Matusik, W., and Rusinkiewicz, S. 2009. Fabricating microgeometry for custom surface reflectance. ACM Trans. Graph. 28, 3 (Aug.). 1 Google ScholarDigital Library
    42. Zohdi, T. I., and Wriggers, P. 2004. Introduction to Computational Micromechanics. Springer-Verlag New York, Inc. 1 Google ScholarDigital Library
    43. Zordan, V. B., Celly, B., Chiu, B., and DiLorenzo, P. C. 2004. Breathe easy: model and control of simulated respiration for animation. In 2004 ACM SIGGRAPH / Eurographics SCA, 29–37. 2 Google ScholarDigital Library

ACM Digital Library Publication:

Overview Page: