“Design and fabrication by example” by Schulz, Shamir, Levin, Sitthi-amorn and Matusik

  • ©Adriana Schulz, Ariel Shamir, David I. W. Levin, Pitchaya Sitthi-amorn, and Wojciech Matusik

Conference:


Type:


Title:

    Design and fabrication by example

Session/Category Title:   Fabrication-Oriented Design


Presenter(s)/Author(s):


Moderator(s):



Abstract:


    We propose a data-driven method for designing 3D models that can be fabricated. First, our approach converts a collection of expert-created designs to a dataset of parameterized design templates that includes all information necessary for fabrication. The templates are then used in an interactive design system to create new fabri-cable models in a design-by-example manner. A simple interface allows novice users to choose template parts from the database, change their parameters, and combine them to create new models. Using the information in the template database, the system can automatically position, align, and connect parts: the system accomplishes this by adjusting parameters, adding appropriate constraints, and assigning connectors. This process ensures that the created models can be fabricated, saves the user from many tedious but necessary tasks, and makes it possible for non-experts to design and create actual physical objects. To demonstrate our data-driven method, we present several examples of complex functional objects that we designed and manufactured using our system.

References:


    1. Agrawala, M., Phan, D., Heiser, J., Haymaker, J., Klingner, J., Hanrahan, P., and Tversky, B. 2003. Designing effective step-by-step assembly instructions. ACM Transactions on Graphics 22, 3, 828–837. Google ScholarDigital Library
    2. Bokeloh, M., Wand, M., Koltun, V., and Seidel, H.-P. 2011. Pattern-aware shape deformation using sliding dockers. ACM Transactions on Graphics 30, 6, 123:1–123:10. Google ScholarDigital Library
    3. Bokeloh, M., Wand, M., Seidel, H.-P., and Koltun, V. 2012. An algebraic model for parameterized shape editing. ACM Transactions on Graphics 31, 4. Google ScholarDigital Library
    4. Chaudhuri, S., and Koltun, V. 2010. Data-driven suggestions for creativity support in 3d modeling. ACM Transactions on Graphics 29, 6, 183:1–183:10. Google ScholarDigital Library
    5. Chaudhuri, S., Kalogerakis, E., Guibas, L. J., and Koltun, V. 2011. Probabilistic reasoning for assembly-based 3d modeling. ACM Transactions on Graphics 30, 4, 35. Google ScholarDigital Library
    6. Chen, D., Sitthi-amorn, P., Lan, J., and Matusik, W. 2013. Computing and fabricating multiplanar models. Computer Graphics Forum (Proceedings of Eurographics 2013) 32, 2.Google Scholar
    7. Chen, T., Zhu, Z., Shamir, A., Hu, S.-M., and Cohen-Or, D. 2013. 3sweep: Extracting editable objects from a single photo. ACM Trans. Graph. 32, 6, 195:1–195:10. Google ScholarDigital Library
    8. Chiou, S.-J., and Sridhar, K. 1999. Automated conceptual design of mechanisms. Mechanism and Machine Theory 34, 3, 467–495.Google ScholarCross Ref
    9. Funkhouser, T. A., Kazhdan, M. M., Shilane, P., Min, P., Kiefer, W., Tal, A., Rusinkiewicz, S., and Dobkin, D. P. 2004. Modeling by example. ACM Transactions on Graphics 23, 3, 652–663. Google ScholarDigital Library
    10. Gal, R., Sorkine, O., Mitra, N. J., and Cohen-Or, D. 2009. Iwires: an analyze-and-edit approach to shape manipulation. ACM Transactions on Graphics 28, 3. Google ScholarDigital Library
    11. Gui, J.-K., and Mäntylä, M. 1994. Functional understanding of assembly modelling. Computer-Aided Design 26, 6, 435–451. Google ScholarDigital Library
    12. Hildebrand, K., Bickel, B., and Alexa, M. 2012. crdbrd: Shape fabrication by sliding planar slices. Computer Graphics Forum (Proceedings of Eurographics 2012) 31, 2. Google ScholarDigital Library
    13. Jain, A., Thormählen, T., Ritschel, T., and Seidel, H.-P. 2012. Exploring shape variations by 3d-model decomposition and part-based recombination. Comp. Graph. Forum (Proc. Eurographics 2012) 31, 2. Google ScholarDigital Library
    14. Kalogerakis, E., Chaudhuri, S., Koller, D., and Koltun, V. 2012. A probabilistic model for component-based shape synthesis. ACM Transactions on Graphics 31, 4. Google ScholarDigital Library
    15. Kaufman, D. M., Sueda, S., James, D. L., and Pai, D. K. 2008. Staggered projections for frictional contact in multibody systems. ACM Trans. Graph. 27, 5 (Dec.). Google ScholarDigital Library
    16. Kim, V. G., Li, W., Mitra, N. J., Chaudhuri, S., DiVerdi, S., and Funkhouser, T. 2013. Learning part-based templates from large collections of 3d shapes. ACM Transactions on Graphics (Proc. of SIGGRAPH 2013). Google ScholarDigital Library
    17. Kraevoy, V., Sheffer, A., Shamir, A., and Cohen-Or, D. 2008. Non-homogeneous resizing of complex models. ACM Transactions on Graphics 27, 5, 111:1–111:9. Google ScholarDigital Library
    18. Lau, M., Ohgawara, A., Mitani, J., and Igarashi, T. 2011. Converting 3d furniture models to fabricatable parts and connectors. ACM Transactions on Graphics 30, 4, 85. Google ScholarDigital Library
    19. Lin, J., Cohen-Or, D., Zhang, H., Liang, C., Sharf, A., Deussen, O., and Chen, B. 2011. Structure-preserving retargeting of irregular 3d architecture. ACM Transactions on Graphics 30, 6, 183:1–183:10. Google ScholarDigital Library
    20. Mori, Y., and Igarashi, T. 2007. Plushie: An interactive design system for plush toys. ACM Transactions on Graphics 26, 3, 45:1–45:8. Google ScholarDigital Library
    21. Ovsjanikov, M., Li, W., Guibas, L. J., and Mitra, N. J. 2011. Exploration of continuous variability in collections of 3d shapes. ACM Transactions on Graphics 30, 4, 33. Google ScholarDigital Library
    22. Roy, U., Pramanik, N., Sudarsan, R., Sriram, R., and Lyons, K. 2001. Function-to-form mapping: model, representation and applications in design synthesis. Computer-Aided Design 33, 10, 699–719.Google ScholarCross Ref
    23. Saul, G., Lau, M., Mitani, J., and Igarashi, T. 2011. Sketchchair: an all-in-one chair design system for end users. In Proceedings of the fifth international conference on tangible, embedded, and embodied interaction, TEI ’11, 73–80. Google ScholarDigital Library
    24. Schwartzburg, Y., and Pauly, M. 2013. Fabrication-aware design with intersecting planar pieces. Computer Graphics Forum (Proceedings of Eurographics 2013) 32, 2.Google Scholar
    25. Shen, C.-H., Fu, H., Chen, K., and Hu, S.-M. 2012. Structure recovery by part assembly. ACM Transactions on Graphics 31, 6. Google ScholarDigital Library
    26. Shtof, A., Agathos, A., Gingold, Y., Shamir, A., and Cohen-Or, D. 2013. Geosemantic snapping for sketch-based modeling. Computer Graphics Forum 32, 2, 245–253. Proceedings of Eurographics 2013.Google ScholarCross Ref
    27. Umetani, N., Igarashi, T., and Mitra, N. J. 2012. Guided exploration of physically valid shapes for furniture design. ACM Transactions on Graphics 31, 4. Google ScholarDigital Library
    28. Xu, K., Zheng, H., Zhang, H., Cohen-Or, D., Liu, L., and Xiong, Y. 2011. Photo-inspired model-driven 3d object modeling. ACM Transactions on Graphics 30, 4, 80. Google ScholarDigital Library
    29. Zheng, Y., Fu, H., Cohen-Or, D., Au, O. K.-C., and Tai, C.-L. 2011. Component-wise controllers for structure-preserving shape manipulation. Computer Graphics Forum 30, 2, 563–572.Google ScholarCross Ref


ACM Digital Library Publication:



Overview Page: