“Computational hydrographic printing” by Zhang, Yin, Zheng and Zhou

  • ©Yizhong Zhang, Chunji Yin, Changxi Zheng, and Kun Zhou




    Computational hydrographic printing



    Hydrographic printing is a well-known technique in industry for transferring color inks on a thin film to the surface of a manufactured 3D object. It enables high-quality coloring of object surfaces and works with a wide range of materials, but suffers from the inability to accurately register color texture to complex surface geometries. Thus, it is hardly usable by ordinary users with customized shapes and textures.We present computational hydrographic printing, a new method that inherits the versatility of traditional hydrographic printing, while also enabling precise alignment of surface textures to possibly complex 3D surfaces. In particular, we propose the first computational model for simulating hydrographic printing process. This simulation enables us to compute a color image to feed into our hydrographic system for precise texture registration. We then build a physical hydrographic system upon off-the-shelf hardware, integrating virtual simulation, object calibration and controlled immersion. To overcome the difficulty of handling complex surfaces, we further extend our method to enable multiple immersions, each with a different object orientation, so the combined colors of individual immersions form a desired texture on the object surface. We validate the accuracy of our computational model through physical experiments, and demonstrate the efficacy and robustness of our system using a variety of objects with complex surface textures.


    1. Bächer, M., Bickel, B., James, D. L., and Pfister, H. 2012. Fabricating articulated characters from skinned meshes. ACM Trans. Graph. 31, 4, 47. Google ScholarDigital Library
    2. Bargteil, A. W., Wojtan, C., Hodgins, J. K., and Turk, G. 2007. A finite element method for animating large viscoplastic flow. ACM Trans. Graph. 26, 3 (July). Google ScholarDigital Library
    3. Batty, C., Uribe, A., Audoly, B., and Grinspun, E. 2012. Discrete viscous sheets. ACM Trans. Graph. 31, 4 (July). Google ScholarDigital Library
    4. Besl P. J., and McKay, N. D. 1992. Method for registration of 3-d shapes. In Robotics-DL tentative, International Society for Optics and Photonics, 586–606.Google Scholar
    5. Bickel, B., Bächer, M., Otaduy, M. A., Matusik, W., Pfister, H., and Gross, M. 2009. Capture and modeling of non-linear heterogeneous soft tissue. ACM Trans. Graph. 28, 3 (July). Google ScholarDigital Library
    6. Bickel, B., Bächer, M., Otaduy, M. A., Lee, H. R., Pfister, H., Gross, M., and Matusik, W. 2010. Design and fabrication of materials with desired deformation behavior. ACM Trans. Graph. 29, 4, 63. Google ScholarDigital Library
    7. Calì, J., Calian, D. A., Amati, C., Kleinberger, R., Steed, A., Kautz, J., and Weyrich, T. 2012. 3d-printing of non-assembly, articulated models. ACM Trans. Graph. 31, 6, 130. Google ScholarDigital Library
    8. Carlson, M., Mucha, P. J., Van Horn, III, R. B., and Turk, G. 2002. Melting and flowing. In Proceedings of SCA’02, 167–174. Google ScholarDigital Library
    9. Ceylan, D., Li, W., Mitra, N. J., Agrawala, M., and Pauly, M. 2013. Designing and fabricating mechanical automata from mocap sequences. ACM Trans. Graph. 32, 6, 186. Google ScholarDigital Library
    10. Chen, X., Zheng, C., Xu, W., and Zhou, K. 2014. An asymptotic numerical method for inverse elastic shape design. ACM Trans. Graph. 33, 4, 95. Google ScholarDigital Library
    11. Coros, S., Thomaszewski, B., Noris, G., Sueda, S., Forberg, M., Sumner, R. W., Matusik, W., and Bickel, B. 2013. Computational design of mechanical characters. ACM Trans. Graph. 32. Google ScholarDigital Library
    12. Darty, L. 2004. The art of enameling: techniques, projects, inspiration. Lark Books.Google Scholar
    13. Desbrun, M., Meyer, M., and Alliez, P. 2002. Intrinsic parameterizations of surface meshes. Comput. Graph. Forum 21.Google Scholar
    14. Dong, Y., Wang, J., Pellacini, F., Tong, X., and Guo, B. 2010. Fabricating spatially-varying subsurface scattering. ACM Trans. Graph. 29, 3, 62. Google ScholarDigital Library
    15. Gingold, Y., Secord, A., Han, J. Y., Grinspun, E., and Zorin, D. 2004. A discrete model for inelastic deformation of thin shells. In Proceedings of SCA’04.Google Scholar
    16. Hašan, M., Fuchs, M., Matusik, W., Pfister, H., and Rusinkiewicz, S. 2010. Physical reproduction of materials with specified subsurface scattering. ACM Trans. Graph. 29, 3. Google ScholarDigital Library
    17. Hopper, R. 2004. Making Marks: Discovering the Ceramic Surface. Krause Publications Craft.Google Scholar
    18. Izadi, S., Kim, D., Hilliges, O., Molyneaux, D., Newcombe, R., Kohli, P., Shotton, J., Hodges, S., Freeman, D., Davison, A., et al. 2011. Kinectfusion: real-time 3d reconstruction and interaction using a moving depth camera. In Proceedings of UIST’11, ACM, 559–568. Google ScholarDigital Library
    19. Katz, J., and Plotkin, A. 2001. Low-speed aerodynamics, vol. 13. Cambridge University Press.Google Scholar
    20. Kraevoy, V., Sheffer, A., and Gotsman, C. 2003. Matchmaker: constructing constrained texture maps. ACM Trans. Graph. 22, 3, 326–3338. Google ScholarDigital Library
    21. Lan, Y., Dong, Y., Pellacini, F., and Tong, X. 2013. Bi-scale appearance fabrication. ACM Trans. Graph. 32, 4, 145. Google ScholarDigital Library
    22. Lévy, B., Petitjean, S., Ray, N., and Maillot, J. 2002. Least squares conformal maps for automatic texture atlas generation. ACM Trans. Graph. 21, 3, 362–371. Google ScholarDigital Library
    23. Lukarski, D. 2013. Paralution – library for iterative sparse methods on multi-core cpu and gpu devices. In NVIDIA GPU Technology Theater, SC 13.Google Scholar
    24. Malzbender, T., Samadani, R., Scher, S., Crume, A., Dunn, D., and Davis, J. 2012. Printing reflectance functions. ACM Trans. Graph. 31, 3, 20. Google ScholarDigital Library
    25. Matusik, W., Ajdin, B., Gu, J., Lawrence, J., Lensch, H. P. A., Pellacini, F., and Rusinkiewicz, S. 2009. Printing spatially-varying reflectance. ACM Trans. Graph. 28, 5, 128. Google ScholarDigital Library
    26. Prévost, R., Whiting, E., Lefebvre, S., and Sorkine-Hornung, O. 2013. Make it stand: balancing shapes for 3d fabrication. ACM Trans. Graph. 32, 4, 81. Google ScholarDigital Library
    27. Rasmussen, N., Enright, D., Nguyen, D., Marino, S., Sumner, N., Geiger, W., Hoon, S., and Fedkiw, R. 2004. Directable photorealistic liquids. In Proceedings of SCA’04, 193–202. Google ScholarDigital Library
    28. Rayleigh, J. W. S. B. 1896. The theory of sound, vol. 2. Macmillan.Google Scholar
    29. Ribe, N. 2002. A general theory for the dynamics of thin viscous sheets. Journal of Fluid Mechanics 457, 255–283.Google ScholarCross Ref
    30. Sander, P. V., Snyder, J., Gortler, S. J., and Hoppe, H. 2001. Texture mapping progressive meshes. In Proceedings of SIGGRAPH ’01, ACM, New York, NY, USA, 409–416. Google ScholarDigital Library
    31. Schlesinger, M., and Paunovic, M. 2011. Modern electroplating, vol. 55. John Wiley & Sons.Google Scholar
    32. Sheffer, A., Praun, E., and Rose, K. 2006. Mesh parameterization methods and their applications. Foundations and Trends in Computer Graphics and Vision 2, 2. Google ScholarDigital Library
    33. Shewchuk, J. R. 1996. Triangle: Engineering a 2d quality mesh generator and delaunay triangulator. In Applied computational geometry towards geometric engineering. Springer, 203–222. Google ScholarDigital Library
    34. Skouras, M., Thomaszewski, B., Coros, S., Bickel, B., and Gross, M. 2013. Computational design of actuated deformable characters. ACM Trans. Graph. 32, 4, 82. Google ScholarDigital Library
    35. Stava, O., Vanek, J., Benes, B., Carr, N., and Měech, R. 2012. Stress relief: Improving structural strength of 3d printable objects. ACM Trans. Graph. 31, 4, 48. Google ScholarDigital Library
    36. Thomaszewski, B., Coros, S., Gauge, D., Megaro, V., Grinspun, E., and Gross, M. 2014. Computational design of linkage-based characters. ACM Trans. Graph. 33, 4 (July), 64:1–64:9. Google ScholarDigital Library
    37. Weyrich, T., Peers, P., Matusik, W., and Rusinkiewicz, S. 2009. Fabricating microgeometry for custom surface reflectance. ACM Trans. Graph. 28, 3, 32. Google ScholarDigital Library
    38. White, F. M., and Corfield, I. 1991. viscous fluid flow, vol. 3. McGraw-Hill New York.Google Scholar
    39. Wicke, M., Ritchie, D., Klingner, B. M., Burke, S., Shewchuk, J. R., and O’Brien, J. F. 2010. Dynamic local remeshing for elastoplastic simulation. ACM Trans. Graph. 29, 4 (July), 49:1–49:11. Google ScholarDigital Library
    40. Wikipedia, 2014. Hydrographics (printing). http://en.wikipedia.org/wiki/Hydrographics_(printing).Google Scholar
    41. Wojtan, C., and Turk, G. 2008. Fast viscoelastic behavior with thin features. ACM Trans. Graph. 27, 3 (Aug.), 47:1–47:8. Google ScholarDigital Library
    42. Wright, E. J., Andrews, G. P., McCoy, C. P., and Jones, D. S. 2013. The effect of dilute solution properties on poly (vinyl alcohol) films. Journal of the mechanical behavior of biomedical materials 28, 222–231.Google ScholarCross Ref
    43. Zhou, K., Wang, X., Tong, Y., Desbrun, M., Guo, B., and Shum, H.-Y. 2005. Texturemontage: Seamless texturing of arbitrary surfaces from multiple images. ACM Trans. Graph. 24, 3. Google ScholarDigital Library

ACM Digital Library Publication:

Overview Page: