“Unified particle physics for real-time applications” by Macklin, Müller-Fischer, Chentanez and Kim

  • ©

Conference:


Type(s):


Title:

    Unified particle physics for real-time applications

Session/Category Title:   Stretching & Flowing


Presenter(s)/Author(s):


Moderator(s):



Abstract:


    We present a unified dynamics framework for real-time visual effects. Using particles connected by constraints as our fundamental building block allows us to treat contact and collisions in a unified manner, and we show how this representation is flexible enough to model gases, liquids, deformable solids, rigid bodies and cloth with two-way interactions. We address some common problems with traditional particle-based methods and describe a parallel constraint solver based on position-based dynamics that is efficient enough for real-time applications.

References:


    1. Akinci, N., Ihmsen, M., Akinci, G., Solenthaler, B., and Teschner, M. 2012. Versatile rigid-fluid coupling for incompressible sph. ACM Trans. Graph. 31, 4 (July), 62:1–62:8. Google ScholarDigital Library
    2. Akinci, N., Akinci, G., and Teschner, M. 2013. Versatile surface tension and adhesion for sph fluids. ACM Trans. Graph. 32, 6 (Nov.), 182:1–182:8. Google ScholarDigital Library
    3. Akinci, N., Cornelis, J., Akinci, G., and Teschner, M. 2013. Coupling elastic solids with smoothed particle hydrodynamics fluids. Computer Animation and Virtual Worlds.Google Scholar
    4. Alduán, I., and Otaduy, M. A. 2011. Sph granular flow with friction and cohesion. In Proceedings of the 2011 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, ACM, New York, NY, USA, SCA ’11, 25–32. Google ScholarDigital Library
    5. Ascher, U. M., Chin, H., Petzold, L. R., and Reich, S. 1995. Stabilization of constrained mechanical systems with daes and invariant manifolds. Journal of Structural Mechanics 23, 2, 135–157.Google ScholarCross Ref
    6. Bao, Z., Hong, J.-M., Teran, J., and Fedkiw, R. 2007. Fracturing rigid materials. Visualization and Computer Graphics, IEEE Transactions on 13, 2, 370–378. Google ScholarDigital Library
    7. Becker, M., Ihmsen, M., and Teschner, M. 2009. Corotated sph for deformable solids. In Proceedings of the Fifth Eurographics conference on Natural Phenomena, Eurographics Association, 27–34. Google ScholarDigital Library
    8. Bell, N., Yu, Y., and Mucha, P. J. 2005. Particle-based simulation of granular materials. In Proceedings of the 2005 ACM SIGGRAPH/Eurographics symposium on Computer animation, ACM, New York, NY, USA, SCA ’05, 77–86. Google ScholarDigital Library
    9. Bender, J., M”uller, M., Otaduy, M. A., Teschner, M., and Macklin, M. 2014. A survey on position-based simulation methods in computer graphics. Computer Graphics Forum, 1–25.Google Scholar
    10. Boyd, S. P., and Vandenberghe, L. 2004. Convex optimization. Cambridge university press. Google ScholarDigital Library
    11. Bridson, R., Fedkiw, R., and Anderson, J. 2002. Robust treatment of collisions, contact and friction for cloth animation. ACM Trans. Graph. 21, 3 (July), 594–603. Google ScholarDigital Library
    12. Brochu, T., Keeler, T., and Bridson, R. 2012. Linear-time smoke animation with vortex sheet meshes. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation, Eurographics Association, Aire-la-Ville, Switzerland, Switzerland, SCA ’12, 87–95. Google ScholarDigital Library
    13. Carlson, M., Mucha, P. J., and Turk, G. 2004. Rigid fluid: animating the interplay between rigid bodies and fluid. In ACM Transactions on Graphics (TOG), vol. 23, ACM, 377–384. Google ScholarDigital Library
    14. Carlson, M. T. 2004. Rigid, melting, and flowing fluid. PhD thesis, Georgia Institute of Technology. Google ScholarDigital Library
    15. Clavet, S., Beaudoin, P., and Poulin, P. 2005. Particle-based viscoelastic fluid simulation. In Proceedings of the 2005 ACM SIGGRAPH/Eurographics symposium on Computer animation, ACM, New York, NY, USA, SCA ’05, 219–228. Google ScholarDigital Library
    16. Corbett, R. D. 2005. Point–Based Level Sets and Progress Towards Unorganised Particle Based Fluids. PhD thesis, The University of British Columbia.Google Scholar
    17. Faure, F. 1999. Interactive solid animation using linearized displacement constraints. In Computer Animation and Simulation98. Springer, 61–72.Google Scholar
    18. Fedkiw, R., Stam, J., and Jensen, H. W. 2001. Visual simulation of smoke. In Proceedings of the 28th annual conference on Computer graphics and interactive techniques, ACM, New York, NY, USA, SIGGRAPH ’01, 15–22. Google ScholarDigital Library
    19. Gao, Y., Li, C.-F., Hu, S.-M., and Barsky, B. A. 2009. Simulating gaseous fluids with low and high speeds. In Pacific Graphics 2009, vol. 28, 1845–1852.Google Scholar
    20. Gascuel, J.-D., and Gascuel, M.-P. 1994. Displacement constraints for interactive modeling and animation of articulated structures. The Visual Computer 10, 4, 191–204.Google ScholarCross Ref
    21. Goldenthal, R., Harmon, D., Fattal, R., Bercovier, M., and Grinspun, E. 2007. Efficient simulation of inextensible cloth. In ACM Transactions on Graphics (TOG), vol. 26, ACM, 49. Google ScholarDigital Library
    22. Green, S. 2008. Cuda particles. nVidia Whitepaper 2, 3.2, 1.Google Scholar
    23. Guendelman, E., Bridson, R., and Fedkiw, R. 2003. Non-convex rigid bodies with stacking. ACM Trans. Graph. 22, 3 (July), 871–878. Google ScholarDigital Library
    24. Guendelman, E., Selle, A., Losasso, F., and Fedkiw, R. 2005. Coupling water and smoke to thin deformable and rigid shells. In ACM Transactions on Graphics (TOG), vol. 24, ACM, 973–981. Google ScholarDigital Library
    25. Harada, T. 2007. Real-Time Rigid Body Simulation on GPUs. In GPU Gems 3, H. Nguyen, Ed. Addison Wesley Professional, Aug., ch. 29.Google Scholar
    26. Ihmsen, M., Akinci, N., Akinci, G., and Teschner, M. 2012. Unified spray, foam and air bubbles for particle-based fluids. Vis. Comput. 28, 6–8 (June), 669–677. Google ScholarDigital Library
    27. Ihmsen, M., Wahl, A., and Teschner, M. 2012. High-resolution simulation of granular material with sph. In Workshop on Virtual Reality Interaction and Physical Simulation, The Eurographics Association, 53–60.Google Scholar
    28. Jakobsen, T. 2001. Advanced character physics. In Game Developers Conference, 383–401.Google Scholar
    29. Keckeisen, M., Kimmerle, S., Thomaszewski, B., and Wacker, M. 2004. Modelling effects of wind fields in cloth animations.Google Scholar
    30. Kim, D., Lee, S. W., young Song, O., and Ko, H.-S. 2012. Baroclinic turbulence with varying density and temperature. IEEE Transactions on Visualization and Computer Graphics 18, 1488–1495. Google ScholarDigital Library
    31. Kim, T.-Y., Chentanez, N., and Müller-Fischer, M. 2012. Long range attachments – a method to simulate inextensible clothing in computer games. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation, Eurographics Association, Aire-la-Ville, Switzerland, Switzerland, SCA ’12, 305–310. Google ScholarDigital Library
    32. Macklin, M., and Müller, M. 2013. Position based fluids. ACM Trans. Graph. 32, 4 (July), 104:1–104:12. Google ScholarDigital Library
    33. Martin, S., Kaufmann, P., Botsch, M., Grinspun, E., and Gross, M. 2010. Unified simulation of elastic rods, shells, and solids. In ACM SIGGRAPH 2010 Papers, ACM, New York, NY, USA, SIGGRAPH ’10, 39:1–39:10. Google ScholarDigital Library
    34. Müller, M., and Chentanez, N. 2011. Adding physics to animated characters with oriented particles. In Workshop in Virtual Reality Interactions and Physical Simulation, The Eurographics Association, 83–91.Google Scholar
    35. Müller, M., and Chentanez, N. 2011. Solid simulation with oriented particles. In ACM Transactions on Graphics (TOG), vol. 30, ACM, 92. Google ScholarDigital Library
    36. Müller, M., Charypar, D., and Gross, M. 2003. Particle-based fluid simulation for interactive applications. In Proceedings of the 2003 ACM SIGGRAPH/Eurographics symposium on Computer animation, Eurographics Association, Aire-la-Ville, Switzerland, Switzerland, SCA ’03, 154–159. Google ScholarDigital Library
    37. Müller, M., Keiser, R., Nealen, A., Pauly, M., Gross, M., and Alexa, M. 2004. Point based animation of elastic, plastic and melting objects. In Proceedings of the 2004 ACM SIGGRAPH/Eurographics symposium on Computer animation, Eurographics Association, 141–151. Google ScholarDigital Library
    38. Müller, M., Schirm, S., Teschner, M., Heidelberger, B., and Gross, M. 2004. Interaction of fluids with deformable solids. In JOURNAL OF COMPUTER ANIMATION AND VIRTUAL WORLDS (CAVW, 159–171. Google ScholarDigital Library
    39. Müller, M., Heidelberger, B., Teschner, M., and Gross, M. 2005. Meshless deformations based on shape matching. In ACM SIGGRAPH 2005 Papers, ACM, New York, NY, USA, SIGGRAPH ’05, 471–478. Google ScholarDigital Library
    40. Müller, M., Heidelberger, B., Hennix, M., and Ratcliff, J. 2007. Position based dynamics. J. Vis. Comun. Image Represent. 18, 2 (Apr.), 109–118. Google ScholarDigital Library
    41. Park, S. I., and Kim, M. J. 2005. Vortex fluid for gaseous phenomena. In Proceedings of the 2005 ACM SIGGRAPH/Eurographics symposium on Computer animation, ACM, 261–270. Google ScholarDigital Library
    42. Pfaff, T., Thuerey, N., and Gross, M. 2012. Lagrangian vortex sheets for animating fluids. ACM Trans. Graph. 31, 4 (July), 112:1–112:8. Google ScholarDigital Library
    43. Rungjiratananon, W., Kanamori, Y., Metaaphanon, N., Bando, Y., Chen, B.-Y., and Nishita, T. 2011. Twisting, tearing and flicking effects in string animations. In Motion in Games. Springer, 192–203. Google ScholarDigital Library
    44. Schechter, H., and Bridson, R. 2012. Ghost sph for animating water. ACM Transactions on Graphics (TOG) 31, 4, 61. Google ScholarDigital Library
    45. Selle, A., Rasmussen, N., and Fedkiw, R. 2005. A vortex particle method for smoke, water and explosions. ACM Trans. Graph. 24, 3 (July), 910–914. Google ScholarDigital Library
    46. Solenthaler, B., and Pajarola, R. 2008. Density contrast sph interfaces. In Proceedings of the 2008 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, Eurographics Association, Aire-la-Ville, Switzerland, Switzerland, SCA ’08, 211–218. Google ScholarDigital Library
    47. Solenthaler, B., Schläfli, J., and Pajarola, R. 2007. A unified particle model for fluid–solid interactions: Research articles. Comput. Animat. Virtual Worlds 18, 1 (Feb.), 69–82. Google ScholarDigital Library
    48. Stam, J., and Fiume, E. 1995. Depicting fire and other gaseous phenomena using diffusion processes. In Proceedings of the 22nd annual conference on Computer graphics and interactive techniques, ACM, 129–136. Google ScholarDigital Library
    49. Stam, J. 1999. Stable fluids. In Proceedings of the 26th annual conference on Computer graphics and interactive techniques, ACM Press/Addison-Wesley Publishing Co., 121–128. Google ScholarDigital Library
    50. Stam, J. 2009. Nucleus: Towards a unified dynamics solver for computer graphics. In Computer-Aided Design and Computer Graphics, 2009. CAD/Graphics’ 09. 11th IEEE International Conference on, IEEE, 1–11.Google ScholarCross Ref
    51. Tonge, R., Wyatt, B., and Nicholson, N. 2010. Physx gpu rigid bodies in batman: Arkham asylum. Game Programming Gems 8, 590–601.Google Scholar
    52. Tonge, R., Benevolenski, F., and Voroshilov, A. 2012. Mass splitting for jitter-free parallel rigid body simulation. ACM Trans. Graph. 31, 4 (July), 105:1–105:8. Google ScholarDigital Library
    53. Weinstein, R., Teran, J., and Fedkiw, R. 2006. Dynamic simulation of articulated rigid bodies with contact and collision. Visualization and Computer Graphics, IEEE Transactions on 12, 3, 365–374. Google ScholarDigital Library
    54. Zhu, Y., and Bridson, R. 2005. Animating sand as a fluid. In ACM SIGGRAPH 2005 Papers, ACM, New York, NY, USA, SIGGRAPH ’05, 965–972. Google ScholarDigital Library


ACM Digital Library Publication:



Overview Page: