“Topology-adaptive interface tracking using the deformable simplicial complex” by Misztal and BÆrentzen

  • ©Marek Krzysztof Misztal and Jakob Andreas BÆrentzen




    Topology-adaptive interface tracking using the deformable simplicial complex



    We present a novel, topology-adaptive method for deformable interface tracking, called the Deformable Simplicial Complex (DSC). In the DSC method, the interface is represented explicitly as a piecewise linear curve (in 2D) or surface (in 3D) which is a part of a discretization (triangulation/tetrahedralization) of the space, such that the interface can be retrieved as a set of faces separating triangles/tetrahedra marked as inside from the ones marked as outside (so it is also given implicitly). This representation allows robust topological adaptivity and, thanks to the explicit representation of the interface, it suffers only slightly from numerical diffusion. Furthermore, the use of an unstructured grid yields robust adaptive resolution. Also, topology control is simple in this setting. We present the strengths of the method in several examples: simple geometric flows, fluid simulation, point cloud reconstruction, and cut locus construction.


    1. Bærentzen, J. A. 2010. Introduction to GEL. http://www2.imm.dku.dk/projects/GEL/intro.pdf.
    2. Bargteil, A. W., Goktekin, T. G., O’Brien, J. F., and Strain, J. A. 2006. A semi-lagrangian contouring method for fluid simulation. ACM Trans. Graph. 25, 1.
    3. Bridson, R. 2008. Fluid Simulation. A. K. Peters, Ltd., Natick, MA.
    4. Brochu, T. and Bridson, R. 2009. Robust topological operations for dynamic explicit surfaces. SIAM J. Sci. Comput. 31, 4, 2472–2493.
    5. Chew, L. 1997. Guaranteed-Quality delaunay meshing in 3d (short version). In Proceedings of the 13th Annual Symposium on Computational Geometry. ACM, New York. 391–393.
    6. Enright, D., Fedkiw, R., Ferziger, J., and Mitchell, I. 2002. A hybrid particle level set method for improved interface capturing. J. Comput. Phys. 183, 1, 83–116.
    7. Erleben, K., Misztal, M. K., and Bærentzen, J. A. 2011. Mathematical foundation of the optimization-based fluid animation method. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA). 101–110.
    8. Floriani, L. D., Hui, A., Panozzo, D., and Canino, D. 2010. A dimension-independent data structure for simplicial complexes. In Proceedings of the 19th International Meshing Roundtable.
    9. Freitag, L. A., Jones, M., and Plassmann, P. 1995. An efficient parallel algorithm for mesh smoothing. In Proceedings of the 4th International Meshing Roundtable. 103–112.
    10. Freitag, L. A. and Ollivier-Gooch, C. 1997. Tetrahedral mesh improvement using swapping and smoothing. Int. J. Numer. Methods Engin. 40, 3979–4002.
    11. Glimm, J., Grove, J. W., Li, X. L., Shyue, K.-M., Zeng, Y., and Zhang, Q. 1995. Three dimensional front tracking. SIAM J. Sci. Comput. 19, 703–727.
    12. Hansen, M. F., Bærentzen, J. A., and Larsen, R. 2009. Generating quality tetrahedral meshes from binary volumes. In Proceedings of the VISAPP Conference.
    13. Hoppe, H., DeRose, T., Duchamp, T., McDonald, J., and Stuetzle, W. 1993. Mesh optimization. In Proceedings of the ACM SIGGRAPH Conference. 19–26.
    14. Jiao, X. 2007. Face offsetting: A unified approach for explicit moving interfaces. J. Comput. Phys. 220, 2, 612–625.
    15. Kazhdan, M., Bolitho, M., and Hoppe, H. 2006. Poisson surface reconstruction. In Proceedings of the 4th Eurographics Symposium on Geometry Processing (SGP ’06). Eurographics Association, 61–70.
    16. Klingner, B. M. and Shewchuk, J. R. 2007. Agressive tetrahedral mesh improvement. In Proceedings of the 16th International Meshing Roundtable. 3–23.
    17. Lachaud, J. and Montanvert, A. 1999. Deformable meshes with automated topology changes for coarse-to-fine three-dimensional surface extraction. Med. Image Anal. 3, 2, 187–207.
    18. Losasso, F., Shinar, T., Selle, A., and Fedkiw, R. 2006. Multiple interacting liquids. ACM Trans. Graph. 25, 3.
    19. Mäntylä, M. 1988. An Introduction to Solid Modeling. Computer Science Press.
    20. McInerney, T. and Terzopoulos, D. 2000. T-snakes: Topology adaptive snakes. Med. Image Anal. 4, 2, 73–91.
    21. Misztal, M. K., Bærentzen, J. A., Anton, F., and Erleben, K. 2009. Tetrahedral mesh improvement using multi-face retriangulation. In Proceedings of the 18th International Meshing Roundtable. 539–556.
    22. Misztal, M. K., Bærentzen, J. A., Anton, F., and Markvorsen, S. 2011. Cut locus construction using deformable simplicial complexes. In Proceedings of the 8th International Symposium on Voronoi Diagrams in Science and Engineering.
    23. Misztal, M. K., Bridson, R., Erleben, K., Bærentzen, J. A., and Anton, F. 2010. Optimization-Based fluid simulation on unstructured meshes. In Proceedings of the 7th Workshop on Virtual Reality Interaction and Physical Simulation (VRIPHYS10).
    24. Osher, S. J. and Fedkiw, R. P. 2002. Level Set Methods and Dynamic Implicit Surfaces 1st Ed. Springer.
    25. Parthasarathy, V. N., Graichen, C. M., and Hathaway, A. F. 1994. A comparison of tetrahedron quality measures. Finite Elements Anal. Des. 15, 3, 255–261.
    26. Pinkall, U. and Polthier, K. 1993. Computing discrete minimal surfaces and their conjugates. Exper. Math. 2, 1, 15–36.
    27. Pons, J.-P. and Boissonnat, J.-D. 2007a. Delaunay deformable models: Topology-adaptive meshes based on the restricted delaunay triangulation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 1–8.
    28. Pons, J.-P. and Boissonnat, J.-D. 2007b. A lagrangian approach to dynamic interfaces through kinetic triangulation of the ambient space. Comput. Graph. Forum 26, 2, 227–239.
    29. Sakai, T. 1996. Riemannian Geometry. Translations of Mathematical Monographs, vol. 149, American Mathematical Society.
    30. Shen, C., O’Brien, J. F., and Shewchuk, J. R. 2004. Interpolating and approximating implicit surfaces from polygon soup. In Proceedings of ACM SIGGRAPH Conference. ACM Press, 896–904.
    31. Shewchuk, J. R. 1998. Tetrahedral mesh generation by Delaunay refinement. In Proceedings of the 14th Annual Symposium on Computational Geometry. ACM, New York. 86–95.
    32. Shewchuk, J. R. 2002. What is a good linear finite element? Interpolation, conditioning, anisotropy, and quality measures. http://www.cs.berkeley.edu/jrs/papers/elemj/pdf.
    33. Si, H. 2004. Tetgen, a quality tetrahedral mesh generator and three-dimensional delaunay triangulator, v1.3 user’s manual. Tech. rep., WIAS.
    34. Thürey, N., Wojtan, C., Gross, M., and Turk, G. 2010. A multiscale approach to mesh-based surface tension flows. In ACM SIGGRAPH 2010 Papers. ACM, New York, 1–10.
    35. Turk, G. and O’brien, J. F. 2002. Modelling with implicit surfaces that interpolate. ACM Trans. Graph. 21, 4, 855–873.
    36. Wicke, M., Ritchie, D., Klingner, B. M., Burke, S., Shewchuk, J. R., and O’Brien, J. F. 2010. Dynamic local remeshing for elastoplastic simulation. In Proceedings of the ACM SIGGRAPH’10 Conference. 49: 111.
    37. Wojtan, C., Thürey, N., Gross, M., and Turk, G. 2009. Deforming meshes that split and merge. In ACM SIGGRAPH 2009 Papers. ACM, 76.
    38. Wojtan, C., Thürey, N., Gross, M., and Turk, G. 2010. Physics-Inspired topology changes for thin fluid features. In ACM SIGGRAPH 2010 Papers. ACM, New York, 1–8.
    39. Zaharescu, A., Boyer, E., and Horaud, R. 2007. Transformesh: A topology-adaptive mesh-based approach to surface evolution. In Proceedings of the Computer Vision Conference. 166–175.
    40. Zaharescu, A., Boyer, E., and Horaud, R. P. 2011. Topology-adaptive mesh deformation for surface evolution, morphing, and multi-view reconstruction. IEEE Trans. Pattern Anal. Mach. Intell. 33, 4, 823–837.

ACM Digital Library Publication:

Overview Page: