“Spin-it: optimizing moment of inertia for spinnable objects” by Bächer, Whiting, Bickel and Sorkine-Hornung

  • ©Moritz Bächer, Emily Whiting, Bernd Bickel, and Olga Sorkine-Hornung



Session Title:



    Spin-it: optimizing moment of inertia for spinnable objects




    Spinning tops and yo-yos have long fascinated cultures around the world with their unexpected, graceful motions that seemingly elude gravity. We present an algorithm to generate designs for spinning objects by optimizing rotational dynamics properties. As input, the user provides a solid 3D model and a desired axis of rotation. Our approach then modifies the mass distribution such that the principal directions of the moment of inertia align with the target rotation frame. We augment the model by creating voids inside its volume, with interior fill represented by an adaptive multi-resolution voxelization. The discrete voxel fill values are optimized using a continuous, nonlinear formulation. Further, we optimize for rotational stability by maximizing the dominant principal moment. We extend our technique to incorporate deformation and multiple materials for cases where internal voids alone are insufficient. Our method is well-suited for a variety of 3D printed models, ranging from characters to abstract shapes. We demonstrate tops and yo-yos that spin surprisingly stably despite their asymmetric appearance.


    1. Bächer, M., Bickel, B., James, D. L., and Pfister, H. 2012. Fabricating articulated characters from skinned meshes. ACM Trans. Graph. 31, 4, 47:1–47:9. Google ScholarDigital Library
    2. Bendsøe, M., and Sigmund, O. 2012. Topology Optimization: Theory, Methods and Applications. Engineering online library. Springer.Google Scholar
    3. Bickel, B., Bächer, M., Otaduy, M. A., Lee, H. R., Pfister, H., Gross, M., and Matusik, W. 2010. Design and fabrication of materials with desired deformation behavior. ACM Trans. Graph. 29, 4. Google ScholarDigital Library
    4. Byrd, R. H., Nocedal, J., and Waltz, R. A. 2006. Knitro: An integrated package for nonlinear optimization. In Large-scale nonlinear optimization. Springer, 35–59.Google Scholar
    5. Calì, J., Calian, D. A., Amati, C., Kleinberger, R., Steed, A., Kautz, J., and Weyrich, T. 2012. 3D-printing of non-assembly, articulated models. ACM Trans. Graph. 31, 6, 130:1–130:8. Google ScholarDigital Library
    6. Ceylan, D., Li, W., Mitra, N., Agrawala, M., and Pauly, M. 2013. Designing and fabricating mechanical automata from mocap sequences. ACM Trans. Graph. 32, 6. Google ScholarDigital Library
    7. Chen, D., Levin, D. I. W., Didyk, P., Sitthi-Amorn, P., and Matusik, W. 2013. Spec2Fab: A reducer-tuner model for translating specifications to 3D prints. ACM Trans. Graph. 32, 4, 135:1–135:10. Google ScholarDigital Library
    8. Cohen, R. J. 1977. The tippe top revisited. American Journal of Physics 45, 1, 12–17.Google ScholarCross Ref
    9. Coros, S., Thomaszewski, B., Noris, G., Sueda, S., Forberg, M., Sumner, R. W., Matusik, W., and Bickel, B. 2013. Computational design of mechanical characters. ACM Trans. Graph. 32, 4, 83:1–83:12. Google ScholarDigital Library
    10. Crabtree, H. 1909. An Elementary Treatment of the Theory of Spinning Tops. Longmans, Green and Co.Google Scholar
    11. Cross, R. 2013. The rise and fall of spinning tops. American Journal of Physics 81, 280.Google ScholarCross Ref
    12. DeRose, G. C. J., and Díaz, A. R. 1996. Hierarchical solution of large-scale three-dimensional topology optimization problems. In ASME Design Engineering Technical Conferences and Computers in Engineering Conference.Google Scholar
    13. Eberly, D. H. 2003. Game Physics. Elsevier Science Inc. Google ScholarDigital Library
    14. Fletcher, R. 1987. Practical Methods of Optimization; (2Nd Ed.). Wiley-Interscience, New York, NY, USA. Google ScholarCross Ref
    15. Furuta, Y., Mitani, J., Igarashi, T., and Fukui, Y. 2010. Kinetic art design system comprising rigid body simulation. Computer-Aided Design and Applications 7, 4, 533–546.Google ScholarCross Ref
    16. Gajamohan, M., Merz, M., Thommen, I., and D’Andrea, R. 2012. The Cubli: A cube that can jump up and balance. In Proc. IROS, IEEE, 3722–3727.Google ScholarCross Ref
    17. Goldstein, H., Poole, C., and Safko, J. 2001. Classical Mechanics, 3rd ed. Addison Wesley.Google Scholar
    18. Gould, D. 1975. The Top: Universal Toy Enduring Pastime. Bailey Brothers and Swinfen Ltd.Google Scholar
    19. Hirose, M., Mitani, J., Kanamori, Y., and Fukui, Y. 2011. An interactive design system for sphericon-based geometric toys using conical voxels. In Proc. International Conference on Smart Graphics, 37–47. Google ScholarDigital Library
    20. Hullin, M. B., Ihrke, I., Heidrich, W., Weyrich, T., Damberg, G., and Fuchs, M. 2013. Computational fabrication and display of material appearance. In Eurographics State-of-the-Art Reports (STAR), 17 pages.Google Scholar
    21. Jacobson, A., Baran, I., Popović, J., and Sorkine, O. 2011. Bounded biharmonic weights for real-time deformation. ACM Trans. Graph. 30, 4, 78:1–78:8. Google ScholarDigital Library
    22. Jacobson, A., Baran, I., Kavan, L., Popović, J., and Sorkine, O. 2012. Fast automatic skinning transformations. ACM Transactions on Graphics (proceedings of ACM SIGGRAPH) 31, 4, 77:1–77:10. Google ScholarDigital Library
    23. Kang, Z., Wang, X., and Wang, R. 2009. Topology optimization of space vehicle structures considering attitude control effort. Finite Elements in Analysis and Design 45, 431–438. Google ScholarDigital Library
    24. König, O., and Wintermantel, M., 2004. CAD-based evolutionary design optimization with CATIA V5. 1st Weimar Optimization and Stochastic Days.Google Scholar
    25. Lewis, D., Ratiu, T., Simo, J. C., and Marsden, J. E. 1992. The heavy top: a geometric treatment. Nonlinearity 5, 1, 1.Google ScholarCross Ref
    26. Luo, L., Baran, I., Rusinkiewicz, S., and Matusik, W. 2012. Chopper: partitioning models into 3D-printable parts. ACM Trans. Graph. 31, 6, 129:1–129:9. Google ScholarDigital Library
    27. Macchietto, A., Zordan, V., and Shelton, C. R. 2009. Momentum control for balance. ACM Trans. Graph. 28, 3. Google ScholarDigital Library
    28. Malko, G. 1978. The One and Only Yo-Yo Book. Avon.Google Scholar
    29. Nocedal, J., and Wright, S. J. 2000. Numerical Optimization. Springer.Google Scholar
    30. Perry, J. 1957. Spinning Tops and Gyroscopic Motion. Dover Publications.Google Scholar
    31. Prévost, R., Whiting, E., Lefebvre, S., and Sorkine-Hornung, O. 2013. Make It Stand: Balancing shapes for 3D fabrication. ACM Trans. Graph. 32, 4, 81:1–81:10. Google ScholarDigital Library
    32. Proos, K., Steven, G., Querin, O., and Xie, Y. 2001. Stiffness and inertia multicriteria evolutionary structural optimisation. Engineering Computations 18, 7, 1031–1054.Google ScholarCross Ref
    33. Provatidis, C. G. 2012. Revisiting the spinning top. International Journal of Material and Mechanical Engineering (IJMME) 1, 4, 71–88.Google Scholar
    34. Skouras, M., Thomaszewski, B., Coros, S., Bickel, B., and Gross, M. 2013. Computational design of actuated deformable characters. ACM Trans. Graph. 32, 4, 82:1–82:10. Google ScholarDigital Library
    35. Sorkine, O., Cohen-Or, D., Lipman, Y., Alexa, M., Rössl, C., and Seidel, H.-P. 2004. Laplacian surface editing. In Proc. Symposium on Geometry Processing, 179–188. Google ScholarDigital Library
    36. Stava, O., Vanek, J., Benes, B., Carr, N., and Měch, R. 2012. Stress relief: Improving structural strength of 3D printable objects. ACM Trans. Graph. 31, 4, 48:1–48:11. Google ScholarDigital Library
    37. Umetani, N., and Schmidt, R. 2013. Cross-sectional structural analysis for 3D printing optimization. In SIGGRAPH Asia 2013 Technical Briefs, 5:1–5:4. Google ScholarDigital Library
    38. Vidimče, K., Wang, S.-P., Ragan-Kelley, J., and Matusik, W. 2013. OpenFab: A programmable pipeline for multi-material fabrication. ACM Trans. Graph. 32, 4, 136:1–136:12. Google ScholarDigital Library
    39. Wang, W., Wang, T. Y., Yang, Z., Liu, L., Tong, X., Tong, W., Deng, J., Chen, F., and Liu, X. 2013. Cost-effective printing of 3D objects with skin-frame structures. ACM Trans. Graph. 32, 6, 177:1–177:10. Google ScholarDigital Library
    40. Zhou, Q., Panetta, J., and Zorin, D. 2013. Worst-case structural analysis. ACM Trans. Graph. 32, 4, 137:1–137:12. Google ScholarDigital Library
    41. Zhou, Y., Sueda, S., Matusik, W., and Shamir, A. 2014. Boxelization: Folding 3d objects into boxes. ACM Trans. Graph. 33, 4 (Jul), (to appear). Google ScholarDigital Library
    42. Zhu, L., Xu, W., Snyder, J., Liu, Y., Wang, G., and Guo, B. 2012. Motion-guided mechanical toy modeling. ACM Trans. Graph. 31, 6, 127. Google ScholarDigital Library

ACM Digital Library Publication: