“Spin transformations of discrete surfaces” by Crane, Pinkall and Schröder

  • ©Keenan Crane, Ulrich Pinkall, and Peter Schröder




    Spin transformations of discrete surfaces



    We introduce a new method for computing conformal transformations of triangle meshes in R3. Conformal maps are desirable in digital geometry processing because they do not exhibit shear, and therefore preserve texture fidelity as well as the quality of the mesh itself. Traditional discretizations consider maps into the complex plane, which are useful only for problems such as surface parameterization and planar shape deformation where the target surface is flat. We instead consider maps into the quaternions H, which allows us to work directly with surfaces sitting in R3. In particular, we introduce a quaternionic Dirac operator and use it to develop a novel integrability condition on conformal deformations. Our discretization of this condition results in a sparse linear system that is simple to build and can be used to efficiently edit surfaces by manipulating curvature and boundary data, as demonstrated via several mesh processing applications.


    1. Ben-Chen, M., Gotsman, C., and Bunin, G. 2008. Conformal Flattening by Curvature Prescription and Metric Scaling. Comp. Graph. Forum 27, 2, 449–458.Google ScholarCross Ref
    2. Ben-Chen, M., Weber O., and Gotsman, C. 2009. Variational Harmonic Maps for Space Deformations. ACM Trans. Graph. 28, 3, 34:1–34:11. Google ScholarDigital Library
    3. Bobenko, A., and Schröder, P. 2005. Discrete Willmore Flow. In Proc. Symp. Geom. Proc., 101–110. Google ScholarDigital Library
    4. Botsch, M., and Sorkine, O. 2008. On Linear Variational Surface Deformation Methods. IEEE Trans. Vis. Comp. Graph. 14, 1, 213–230. Google ScholarDigital Library
    5. Desbrun, M., Meyer, M., and Alliez, P. 2002. Intrinsic Parameterizations of Surface Meshes. Comp. Graph. Forum 21, 3, 209–218.Google ScholarCross Ref
    6. Desbrun, M., Kanso, E., and Tong, Y. 2008. Discrete Differential Forms for Computational Modeling. In Discrete Differential Geometry, A. I. Bobenko, P. Schröder, J. M. Sullivan, and G. M. Ziegler, Eds., Vol. 38 of Oberwolfach Seminars. Birkhäuser Verlag, 287–324.Google Scholar
    7. Duffin, R. 1959. Distributed and Lumped Networks. J. Math. Mech. {continued as Indiana Univ. Math. J.} 8, 793–826.Google ScholarCross Ref
    8. Eigensatz, M., and Pauly, M. 2009. Positional, Metric, and Curvature Control for Constraint-Based Surface Deformation. Comp. Graph. Forum 28, 2, 551–558.Google ScholarCross Ref
    9. Eigensatz, M., Sumner. R. W., and Pauly, M. 2008. Curvature-Domain Shape Processing. Comp. Graph. Forum 27, 2, 241–250.Google ScholarCross Ref
    10. Friedrich, T 1998. On the Spinor Representation of Surfaces in Euclidean 3-Space. J. Geom. and Phys. 28, 1–2, 143–157.Google ScholarCross Ref
    11. Gu, X., and Yau, S.-T. 2003. Global Conformal Surface Parameterization. In Proc. Symp. Geom. Proc., 127–137. Google ScholarDigital Library
    12. Kamberov, G., Pedit, F., and Pinkall, U. 1998. Bonnet Pairs and Isothermic Surfaces. Duke Math. J. 92, 3, 637–644.Google ScholarCross Ref
    13. Lévy, B., Petitjean, S., Ray, N., and Maillot, J. 2002. Least Squares Conformal Maps for Automatic Texture Atlas Generation. ACM Trans. Graph. 21, 3, 362–371. Google ScholarDigital Library
    14. Lipman, Y., Sorkine, O., Levin, D., and Cohen-Or, D. 2005. Linear Rotation-Invariant Coordinates for Meshes. ACM Trans. Graph. 24, 3, 479–487. Google ScholarDigital Library
    15. Lipman, Y., Cohen-Or, D., Gal, R., and Levin, D. 2007. Volume and Shape Preservation via Moving Frame Manipulation. ACM Trans. Graph. 26, 1. Google ScholarDigital Library
    16. Lipman, Y., Levin, D., and Cohen-Or, D. 2008. Green Coordinates. ACM Trans. Graph. 27. Google Scholar
    17. Mercat, C. 2001. Discrete Riemann Surfaces and the Ising Model. Comm. Math. Physics 218, 1, 177–216.Google ScholarCross Ref
    18. Mullen, P., Tong, Y., Alliez, P., and Desbrun, M. 2008. Spectral Conformal Parameterization. Comp. Graph. Forum 27, 5, 1487–1494. Google ScholarDigital Library
    19. Paries, N., Degener, P., and Klein, R. 2007. Simple and Efficient Mesh Editing with Consistent Local Frames. In Proc. Pac. Graph., Comp. Graph. Appl., 461–464. Google Scholar
    20. Pedit, F., and Pinkall, U. 1998. Quaternionic Analysis on Riemann Surfaces and Differential Geometry. In Proc. Int. Congr. Math., Vol. 21, 389–400.Google Scholar
    21. Richter. J. 1997. Conformal Maps of a Riemann Surface into the Space of Quaternions. PhD thesis, TU Berlin.Google Scholar
    22. Sander, P. V., Snyder. J., Gortler, S. J., and Hoppe, H. 2001. Texture Mapping Progressive Meshes. In Proc. ACM/SIGGRAPH Conf., 409–416. Google Scholar
    23. Springborn, B., Schröder, P., and Pinkall, U. 2008. Conformal Equivalence of Triangle Meshes. ACM Trans. Graph. 27, 3. Google ScholarDigital Library
    24. Taimanov, I. 2006. Two-Dimensional Dirac Operator and Surface Theory. Russ. Math. Surveys 61, 1, 79–159.Google ScholarCross Ref
    25. Yang, Y., Kim, J., Luo, F., Hu, S., and Gu, D. 2008. Optimal Surface Parameterization Using Inverse Curvature Map. IEEE Trans. Vis. Comp. Graph. 14, 5, 1054–1066. Google ScholarDigital Library
    26. Yu, Y., Zhou, K., Xu, D., Shi, X., Bao, H., Guo, B., and Shum, H.-Y. 2004. Mesh Editing with Poisson-based Gradient Field Manipulation. ACM Trans. Graph. 23, 3, 644–651. Google ScholarDigital Library

ACM Digital Library Publication:

Overview Page: