“Spectral remapping for image downscaling” by Gastal and Oliveira
Conference:
Type:
Title:
- Spectral remapping for image downscaling
Presenter(s)/Author(s):
Session Title: Image and Light Field Manipulation
Moderator(s):
Abstract:
We present an image downscaling technique capable of appropriately representing high-frequency structured patterns. Our method breaks conventional wisdom in sampling theory—instead of discarding high-frequency information to avoid aliasing, it controls aliasing by remapping such information to the representable range of the downsampled spectrum. The resulting images provide more faithful representations of their original counterparts, retaining visually-important details that would otherwise be lost. Our technique can be used with any resampling method and works for both natural and synthetic images. We demonstrate its effectiveness on a large number of images downscaled in combination with various resampling strategies. By providing an alternative solution for a long-standing problem, our method opens up new possibilities for image processing.
References:
1. E. H. Adelson. 1995. Checkershadow Illusion. http://web.mit.edu/persci/people/adelson/checkershadow_illusion.html. (1995). Accessed: 2017-01-05.Google Scholar
2. T. Blu, P. Thcvenaz, and M. Unser. 2001. MOMS: Maximal-order interpolation of minimal support. IEEE TIP 10, 7 (2001), 1069–1080. Google ScholarDigital Library
3. T. A. Davis. 2011. Algorithm 915, SuiteSparseQR: Multifrontal Multithreaded Rank-revealing Sparse QR Factorization. ACM Trans. Math. Softw. 38, 1 (2011), 8:1–8:22.Google ScholarDigital Library
4. D. Gabor. 1946. Theory of Communication. Part 1: The Analysis of Information. Journal of the IEEE 93, 26 (Nov. 1946), 429–441. Google ScholarCross Ref
5. E. J. Hannan. 1973. The Estimation of Frequency. Journal of Applied Probability 10, 3 (1973), 510–519. Google ScholarCross Ref
6. F.J. Harris. 1978. On the Use of Windows for Harmonic Analysis with the Discrete Fourier Transform. Proc. of the IEEE 66, 1 (1978), 51–83. Google ScholarCross Ref
7. C. Heil. 2007. History and Evolution of the Density Theorem for Gabor Frames. Journ. of Fourier Anal. and Applic. 13, 2 (2007), 113–166. Google ScholarCross Ref
8. E. Jacobsen and P. Kootsookos. 2007. Fast, Accurate Frequency Estimators. IEEE Signal Process. Mag. 24, 3 (2007), 123–125. Google ScholarCross Ref
9. J. Kopf, A. Shamir, and P. Peers. 2013. Content-adaptive Image Downscaling. ACM TOG 32, 6, Article 173 (Nov. 2013), 8 pages. Google ScholarDigital Library
10. T. Liu, J. Sun, N. N. Zheng, X. Tang, and H. Y. Shum. 2007. Learning to Detect A Salient Object. In IEEE CVPR. 1–8. Google ScholarCross Ref
11. J. Mairal, F. Bach, and J. Ponce. 2014. Sparse Modeling for Image and Vision Processing. Foundations and Trends in C.G. and Vision 8, 2–3 (2014), 85–283.Google ScholarDigital Library
12. S. G. Mallat. 1998. A Wavelet Tour of Signal Processing (2nd ed.). Academic Press.Google Scholar
13. D. P. Mitchell and A. N. Netravali. 1988. Reconstruction Filters in Computer-graphics. In Proc. SIGGRAPH ’88. 221–228. Google ScholarDigital Library
14. D. Nehab and H. Hoppe. 2014. A Fresh Look at Generalized Sampling. Foundations and Trends in C.G. and Vision 8, 1 (2014), 1–84. Google ScholarDigital Library
15. B. A. Olshausen and D. J. Field. 1996. Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 381 (1996), 607–609. Google ScholarCross Ref
16. A. V. Oppenheim and J. S. Lim. 1981. The importance of phase in signals. Proc. IEEE 69, 5 (1981), 529–541. Google ScholarCross Ref
17. A. Cengiz Öztireli and Markus Gross. 2015. Perceptually Based Downscaling of Images. ACM TOG 34, 4, Article 77 (July 2015), 10 pages. Google ScholarDigital Library
18. J. Portilla and E. P. Simoncelli. 2000. A Parametric Texture Model based on Joint Statistics of Complex Wavelet Coefficients. Int’l Journal of Computer Vision 40, 1 (2000), 49–71. Google ScholarDigital Library
19. J. G. Proakis and D. K. Manolakis. 2007. Digital Signal Processing: Principles, Algorithms, and Applications. Pearson Education India.Google Scholar
20. T. Quatieri and Rl McAulay. 1986. Speech Transformations Based on a Sinusoidal Representation. IEEE Transactions on Acoustics, Speech, and Signal Processing 34, 6 (1986), 1449–1464.Google ScholarCross Ref
21. B. G. Quinn. 1989. Estimating the Number of Terms in a Sinusoidal Regression. Journal of Time Series Analysis 10, 1 (1989), 71–75. Google ScholarCross Ref
22. E. Reinhard, M. Ashikhmin, B. Gooch, and P. Shirley. 2001. Color Transfer Between Images. IEEE Comput. Graph. Appl. 21, 5 (2001), 34–41. Google ScholarDigital Library
23. D. C. Rife and R. R. Boorstyn. 1976. Multiple Tone Parameter Estimation From Discrete Time Observations. Bell System Technical Journal 55 (1976), 1389–1410. Google ScholarCross Ref
24. L. Sacht and D. Nehab. 2015. Optimized quasi-interpolators for image reconstruction. IEEE TIP 24, 12 (2015), 5249–5259. Google ScholarCross Ref
25. R. Samadani, T. A. Mauer, D. M. Berfanger, and J. H. Clark. 2010. Image Thumbnails That Represent Blur and Noise. IEEE TIP 19, 2 (2010), 363–373. Google ScholarDigital Library
26. C. E. Shannon. 1949. Communication in the Presence of Noise. Proc. Institute of Radio Engineers 37, 1 (1949), 10–21. Google ScholarCross Ref
27. J. O. Smith and X. Serra. 1987. PARSHL: An Analysis / Synthesis Program for Non-Harmonic Sounds Based on a Sinusoidal Representation. In Proc. of the Int’l Computer Music Conference.Google Scholar
28. M. Trentacoste, R. Mantiuk, and W. Heidrich. 2011. Blur-Aware Image Downsampling. Computer Graphics Forum (2011). Google ScholarCross Ref
29. M. Unser. 2000. Sampling-50 Years after Shannon. Proc. IEEE 88, 4 (2000), 569–587. Google ScholarCross Ref
30. Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli. 2004. Image quality assessment: from error visibility to structural similarity. IEEE TIP 13, 4 (2004), 600–612. Google ScholarDigital Library
31. N. Weber, M. Waechter, S. C. Amend, S. Guthe, and M. Goesele. 2016. Rapid, Detail-preserving Image Downscaling. ACM TOG 35, 6, Article 205 (Nov. 2016), 6 pages.Google Scholar
32. M. Zibulski and Y. Y. Zeevi. 1994. Frame Analysis of the Discrete Gabor-Scheme. IEEE Trans. on Sig. Proc. 42, 4 (1994), 942–945. Google ScholarDigital Library