“Smoke simulation for large scale phenomena” by Rasmussen, Quang Nguyen, Geiger and Fedkiw

  • ©Nick Rasmussen, Duc Quang Nguyen, Willi Geiger, and Ronald Fedkiw




    Smoke simulation for large scale phenomena



    In this paper, we present an efficient method for simulating highly detailed large scale participating media such as the nuclear explosions shown in figure 1. We capture this phenomena by simulating the motion of particles in a fluid dynamics generated velocity field. A novel aspect of this paper is the creation of highly detailed three-dimensional turbulent velocity fields at interactive rates using a low to moderate amount of memory. The key idea is the combination of two-dimensional high resolution physically based flow fields with a moderate sized three-dimensional Kolmogorov velocity field tiled periodically in space.


    1. BLINN, J. F. 1982. Light Reflection Functions for Simulation of Clouds and Dusty Surfaces. Comput. Graph. 16, 3, 21–29. Google ScholarCross Ref
    2. BRODLIE, K., AND WOOD, J. 2001. Recent Advances in Volume Visualization. Comput. Graph. Forum 20, 1, 125–148.Google ScholarCross Ref
    3. CHANDRASEKHAR, S. 1960. Radiative Transfer. Dover, New York.Google Scholar
    4. DESBRUN, M., AND CANI, M.-P. 1996. Smoothed particles: A new paradigm for animating highly deformable bodies. In Comput. Anim. and Sim. ’96 (Proc. of EG Workshop on Anim. and Sim.), Springer-Verlag, R. Boulic and G. Hegron, Eds., 61–76. Published under the name Marie-Paule Gascuel. Google Scholar
    5. DOBASHI, Y., KANEDA, K., OKITA, T., AND NISHITA, T. 2000. A Simple, Efficient Method for Realistic Animation of Clouds. In SIGGRAPH 2000 Conf. Proc., Annual Conf. Series, 19–28. Google Scholar
    6. EBERT, D. S., AND PARENT, R. E. 1990. Rendering and Animation of Gaseous Phenomena by Combining Fast Volume and Scanline A-buffer Techniques. In Proc. of SIGGRAPH 1990, 357–366. Google ScholarCross Ref
    7. ENRIGHT, D., MARSCHNER, S., AND FEDKIW, R. 2002. Animation and Rendering of Complex Water Surfaces. In Proc. of SIGGRAPH 2001, 736–744. Google Scholar
    8. FEDKIW, R., STAM, J., AND JENSEN, H. W. 2001. Visual Simulation of Smoke. In Proc. of SIGGRAPH 2001, 15–22. Google ScholarDigital Library
    9. FOSTER, N., AND FEDKIW, R. 2001. Practical Animation of Liquids. In Proc. of SIGGRAPH 2001, 23–30. Google ScholarCross Ref
    10. FOSTER, N., AND METAXAS, D. 1996. Realistic Animation of Liquids. Graph. Models and Image Processing 58, 471–483. Google ScholarDigital Library
    11. FOSTER, N., AND METAXAS, D. 1997. Modeling the Motion of a Hot, Turbulent Gas. In Proc. of SIGGRAPH 1997, 181–188. Google Scholar
    12. GAMITO, M. N. 1995. Two dimensional Simulation of Gaseous Phenomena Using Vortex Particles. In Proc. of the 6th Eurographics Workshop on Comput. Anim. and Sim., Springer-Verlag, 3–15.Google Scholar
    13. GARDNER, G. Y. 1985. Visual Simulation of Clouds. In Proc. of SIGGRAPH 1985, 297–384. Google ScholarDigital Library
    14. GINGOLD, R. A., AND MONAGHAN, J. J. 1977. Smoothed Particle Hydrodynamics-Theory and application to nonspherical stars. Mon. Not. R. Astron. Soc. 181, 375.Google ScholarCross Ref
    15. HADAP, S., AND MAGNENAT-THALMANN, N. 2001. Modeling Dynamic Hair as a Continuum. Comput. Graph. Forum 20, 3.Google ScholarCross Ref
    16. JENSEN, H. W., AND BUHLER, J. 2002. A Rapid Hierarchical Rendering Technique for Translucent Materials. In Proc. of SIGGRAPH 2002, 576–581. Google ScholarDigital Library
    17. JENSEN, H. W., AND CHRISTENSEN, P. H. 1998. Efficient Simulation of Light Transport in Scenes with Participating Media using Photon Maps. In Proc. of SIGGRAPH 2002, 311–320. Google Scholar
    18. JENSEN, H. W., MARSCHNER, S., LEVOY, M., AND HANRAHAN, P. 2002. A Practical Model for Subsurface Light Transport. In Proc. of SIGGRAPH 2002, 511–518. Google Scholar
    19. KAJIYA, J. T., AND VON HERZEN, B. P. 1984. Ray Tracing Volume Densities. In Proc. of SIGGRAPH 1984, 165–174. Google ScholarDigital Library
    20. LAMORLETTE, A., AND FOSTER, N. 2002. Structural Modeling of Flames for a Production Environment. In Proc. of SIGGRAPH 2002, 729–735. Google ScholarDigital Library
    21. LANDAU, L. D., AND LIFSHITZ, E. M. 1998. Fluid Mechanics, 2nd edition. Butterworth-Heinemann, Oxford.Google Scholar
    22. LEVOY, M. 1988. Display of Surfaces from Volume Data. IEEE Comput. Graph. and Appl. 8, 3, 29–37. Google ScholarDigital Library
    23. MIYAZAKI, R., DOBASHI, Y., AND NISHITA, T. 2002. Simulation of Cumuliform Clounds Based on Computational Fluid Dynamics. Proc. Eurographics 2002 Short Presentation, 405–410.Google Scholar
    24. MUELLER, K., MOLLER, T., AND CRAWFIS, R. 1999. Splatting without Blur. In Proc. IEEE Vis. 1999, 363–370. Google ScholarDigital Library
    25. NEFF, M., AND FIUME, E. 1999. A Visual Model for Blast Waves and Fracture. In Proc. of Graph. Interface 1999, 193–202. Google ScholarDigital Library
    26. NGUYEN, D., FEDKIW, R., AND JENSEN, H. W. 2002. Physically Based Modeling and Animation of Fire. In Proc. of SIGGRAPH 2002, 721–728. Google ScholarDigital Library
    27. PERLIN, K. 1985. An Image Synthesizer. In Proc. of SIGGRAPH 1985, 287–296. Google ScholarDigital Library
    28. RUDOLF, M. J., AND RACZKOWSKI, J. 2000. Modeling the Motion of Dense Smoke in the Wind Field. Comput. Graph. Forum 19, 3.Google ScholarCross Ref
    29. SAKAS, G. 1990. Fast Rendering of Arbitrary Distributed Volume Densities. In Proc. of Eurographics 1990, 519–530.Google Scholar
    30. SAKAS, G. 1993. Modeling and Animating Turbulent Gaseous Phenomena Using Spectral Synthesis. The Vis. Comput. 9, 200–212. Google ScholarDigital Library
    31. SIMS, K. 1990. Particle Animation and Rendering Using Data Parallel Computation. Comput. Graph. 24, 4, 405–413. Google ScholarCross Ref
    32. STAM, J., AND FIUME, E. 1993. Turbulent Wind Fields for Gaseous Phenomena. In Proc. of SIGGRAPH 1993, 369–376. Google ScholarCross Ref
    33. STAM, J., AND FIUME, E. 1995. Depicting Fire and Other Gaseous Phenomena Using Diffusion Process. In Proc. of SIGGRAPH 1995, 129–136. Google Scholar
    34. STAM, J. 1999. Stable Fluids. In SIGGRAPH 99 Conf. Proc., Annual Conf. Series, 121–128. Google Scholar
    35. STEINHOFF, J., AND UNDERHILL, D. 1994. Modification of the Euler Equations for “Vorticity Confinement”: Application to the Computation of Interacting Vortex Rings. Phys. of Fluids 6, 8, 2738–2744.Google ScholarCross Ref
    36. SZELISKI, R., AND TONNESEN, D. 1992. Surface modeling with oriented particle systems. Comp. Graph. (SIGGRAPH Proc.), 185–194. Google Scholar
    37. TESSENDORF, J. 2002. Simulating Ocean Water. In Simulating Nature: Realistic and Interactive Techniques, SIGGRAPH 2002, Course Notes 9.Google Scholar
    38. WEJCHERT, J., AND HAUMANN, D. 1991. Animation Aerodynamics. Comput. Graph. 25, 4, 19–22. Google ScholarDigital Library
    39. WESTOVER, L. 1990. Footprint Evaluation for Volume Rendering. In Proc. of SIGGRAPH 1990, 367–376. Google ScholarCross Ref
    40. YAEGER, L., AND UPSON, C. 1986. Combining Physical and Visual Simulation – Creation of the Planet Jupiter for the Film 2010. In Proc. of SIGGRAPH 1986, 85–93. Google ScholarDigital Library
    41. YNGVE, G. D., O’BRIEN, J. F., AND HODGINS, J. K. 2000. Animating Explosions. In Proc. of SIGGRAPH 2000, 29–36. Google Scholar

ACM Digital Library Publication:

Overview Page: