“Skaterbots: optimization-based design and motion synthesis for robotic creatures with legs and wheels” by Geilinger, Poranne, Desai and Coros

  • ©Moritz Geilinger, Roi Poranne, Ruta Desai, and Stelian Coros



Entry Number: 160


    Skaterbots: optimization-based design and motion synthesis for robotic creatures with legs and wheels

Session/Category Title:   Fabrication for Color and Motion




    We present a computation-driven approach to design optimization and motion synthesis for robotic creatures that locomote using arbitrary arrangements of legs and wheels. Through an intuitive interface, designers first create unique robots by combining different types of servomotors, 3D printable connectors, wheels and feet in a mix-and-match manner. With the resulting robot as input, a novel trajectory optimization formulation generates walking, rolling, gliding and skating motions. These motions emerge naturally based on the components used to design each individual robot. We exploit the particular structure of our formulation and make targeted simplifications to significantly accelerate the underlying numerical solver without compromising quality. This allows designers to interactively choreograph stable, physically-valid motions that are agile and compelling. We furthermore develop a suite of user-guided, semi-automatic, and fully-automatic optimization tools that enable motion-aware edits of the robot’s physical structure. We demonstrate the efficacy of our design methodology by creating a diverse array of hybrid legged/wheeled mobile robots which we validate using physics simulation and through fabricated prototypes.


    1. Moritz Bächer, Bernd Bickel, Doug L. James, and Hanspeter Pfister. 2012. Fabricating Articulated Characters from Skinned Meshes. ACM Trans. Graph. 31, 4, Article 47 (July 2012), 9 pages. Google ScholarDigital Library
    2. Moritz Bächer, Benjamin Hepp, Fabrizio Pece, Paul G. Kry, Bernd Bickel, Bernhard Thomaszewski, and Otmar Hilliges. 2016. DefSense: Computational Design of Customized Deformable Input Devices. In Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems (CHI ’16). ACM, New York, NY, USA, 3806–3816. Google ScholarDigital Library
    3. Moritz Bächer, Emily Whiting, Bernd Bickel, and Olga Sorkine-Hornung. 2014. Spin-it: optimizing moment of inertia for spinnable objects. ACM Transactions on Graphics (TOG) 33, 4 (2014), 96. Google ScholarDigital Library
    4. James M. Bern, Kai-Hung Chang, and Stelian Coros. 2017. Interactive Design of Animated Plushies. ACM Trans. Graph. 36, 4, Article 80 (July 2017), 11 pages. Google ScholarDigital Library
    5. Gaurav Bharaj, Stelian Coros, Bernhard Thomaszewski, James Tompkin, Bernd Bickel, and Hanspeter Pfister. 2015. Computational Design of Walking Automata. In Proceedings of the 14th ACM SIGGRAPH / Eurographics Symposium on Computer Animation (SCA ’15). ACM, New York, NY, USA, 93–100. Google ScholarDigital Library
    6. BostonDynamics. 2017. Handle, https://www.bostondynamics.com/handle.Google Scholar
    7. Jacques Calì, Dan A. Calian, Cristina Amati, Rebecca Kleinberger, Anthony Steed, Jan Kautz, and Tim Weyrich. 2012. 3D-printing of Non-assembly, Articulated Models. ACM Trans. Graph. 31, 6, Article 130 (Nov. 2012), 8 pages. Google ScholarDigital Library
    8. Duygu Ceylan, Wilmot Li, Niloy J Mitra, Maneesh Agrawala, and Mark Pauly. 2013. Designing and fabricating mechanical automata from mocap sequences. ACM Transactions on Graphics (TOG) 32, 6 (2013), 186. Google ScholarDigital Library
    9. Stelian Coros, Bernhard Thomaszewski, Gioacchino Noris, Shinjiro Sueda, Moira Forberg, Robert W Sumner, Wojciech Matusik, and Bernd Bickel. 2013. Computational design of mechanical characters. ACM Transactions on Graphics (TOG) 32, 4 (2013), 83. Google ScholarDigital Library
    10. Hongkai Dai, Andres Valenzuela, and Russ Tedrake. 2014. Whole-body motion planning with centroidal dynamics and full kinematics. In Humanoids.Google Scholar
    11. R. Desai, Y. Yuan, and S. Coros. 2017. Computational Abstractions for Interactive Design of Robotic Devices. In Proc. of the IEEE International Conference on Robotics and Automation (ICRA).Google Scholar
    12. Tao Du, Adriana Schulz, Bo Zhu, Bernd Bickel, and Wojciech Matusik. 2016. Computational Multicopter Design. ACM Trans. Graph. 35, 6, Article 227 (Nov. 2016), 10 pages. Google ScholarDigital Library
    13. G. Endo and S. Hirose. 2008. Study on Roller-Walker – Adaptation of characteristics of the propulsion by a leg trajectory -. In 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems. 1532–1537.Google Scholar
    14. Sean Follmer, Valkyrie Savage, Jingy Li, and Bjoern Hartmann. 2015. Makers’ Marks: Physical Markup for Designing and Fabricating Functional Objects. In UIST’15 Proceedings of the 28th annual ACM symposium on User interface software and technology. Google ScholarDigital Library
    15. Sehoon Ha, Stelian Coros, Alex Alspach, Joohyung Kim, and Katsu Yamane. 2017. Joint Optimization of Robot Design and Motion Parameters using the Implicit Function Theorem. In Robotics: Science and Systems. RSS.Google Scholar
    16. Kyunglyul Hyun, Kyungho Lee, and Jehee Lee. 2016. Motion Grammars for Character Animation. In Proceedings of the 37th Annual Conference of the European Association for Computer Graphics (EG ’16). Eurographics Association, Goslar Germany, Germany, 103–113. Google ScholarDigital Library
    17. Lucas Kovar, Michael Gleicher, and Frédéric Pighin. 2002. Motion Graphs. In Proceedings of the 29th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH ’02). ACM, New York, NY, USA, 473–482. Google ScholarDigital Library
    18. Lin Lu, Andrei Sharf, Haisen Zhao, Yuan Wei, Qingnan Fan, Xuelin Chen, Yann Savoye, Changhe Tu, Daniel Cohen-Or, and Baoquan Chen. 2014. Build-to-last: strength to weight 3D printed objects. ACM Transactions on Graphics (TOG) 33, 4 (2014), 97. Google ScholarDigital Library
    19. Vittorio Megaro, Bernhard Thomaszewski, Maurizio Nitti, Otmar Hilliges, Markus Gross, and Stelian Coros. 2015. Interactive Design of 3D-printable Robotic Creatures. ACM Trans. Graph. 34, 6, Article 216 (Oct. 2015), 9 pages. Google ScholarDigital Library
    20. Vittorio Megaro, Jonas Zehnder, Moritz Bächer, Stelian Coros, Markus Gross, and Bernhard Thomaszewski. 2017. A Computational Design Tool for Compliant Mechanisms. ACM Trans. Graph. 36, 4, Article 82 (July 2017), 12 pages. Google ScholarDigital Library
    21. Przemyslaw Musialski, Thomas Auzinger, Michael Birsak, Michael Wimmer, Leif Kobbelt, and TU Wien. 2015. Reduced-order shape optimization using offset surfaces. ACM Transactions on Graphics (TOG) 34, 4 (2015), 102. Google ScholarDigital Library
    22. ODE. 2007. Open Dynamics Engine, http://www.ode.org/.Google Scholar
    23. David E. Orin, Ambarish Goswami, and Sung-Hee Lee. 2013. Centroidal Dynamics of a Humanoid Robot. Auton. Robots 35, 2-3 (Oct. 2013), 161–176. Google ScholarDigital Library
    24. Jesús Pérez, Miguel A. Otaduy, and Bernhard Thomaszewski. 2017. Computational Design and Automated Fabrication of Kirchhoff-plateau Surfaces. ACM Trans. Graph. 36, 4, Article 62 (July 2017), 12 pages. Google ScholarDigital Library
    25. Romain Prévost, Emily Whiting, Sylvain Lefebvre, and Olga Sorkine-Hornung. 2013. Make it stand: balancing shapes for 3D fabrication. ACM Transactions on Graphics (TOG) 32, 4 (2013), 81. Google ScholarDigital Library
    26. Adriana Schulz, Cynthia Sung, Andrew Spielberg, Wei Zhao, Robin Cheng, Eitan Grinspun, Daniela Rus, and Wojciech Matusik. 2017. Interactive robogami: An end-to-end system for design of robots with ground locomotion. The International Journal of Robotics Research 36, 10 (2017), 1131–1147. Google ScholarDigital Library
    27. J. A. Smith, I. Sharf, and M. Trentini. 2006. PAW: a hybrid wheeled-leg robot. In Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006. 4043–4048.Google Scholar
    28. Peng Song, Xiaofei Wang, Xiao Tang, Chi-Wing Fu, Hongfei Xu, Ligang Liu, and Niloy J. Mitra. 2017. Computational Design of Wind-up Toys. ACM Trans. Graph. 36, 6, Article 238 (Nov. 2017), 13 pages. Google ScholarDigital Library
    29. Ondrej Stava, Juraj Vanek, Bedrich Benes, Nathan Carr, and Radomír Měch. 2012. Stress relief: improving structural strength of 3D printable objects. ACM Transactions on Graphics (TOG) 31, 4 (2012), 48. Google ScholarDigital Library
    30. Nobuyuki Umentani, Takeo Igarashi, and Niloy J. Mitra. 2015. Guided Exploration of Physically Valid Shapes for Furniture Design. Commun. ACM 58, 9 (Aug. 2015), 116–124. Google ScholarDigital Library
    31. Francisca Gil Ureta, Chelsea Tymms, and Denis Zorin. 2016. Interactive Modeling of Mechanical Objects. In Proceedings of the Symposium on Geometry Processing (SGP ’16). Eurographics Association, Goslar Germany, Germany, 145–155. Google ScholarDigital Library
    32. Nicolas Villar, James Scott, Steve Hodges, Kerry Hammil, and Colin Miller. 2012. . NET gadgeteer: a platform for custom devices. In Pervasive Computing. Springer, 216–233. Google ScholarDigital Library
    33. Christian Weichel, Manfred Lau, and Hans Gellersen. 2013. Enclosed: a component-centric interface for designing prototype enclosures. In Proceedings of the 7th International Conference on Tangible, Embedded and Embodied Interaction. ACM, 215–218. Google ScholarDigital Library
    34. Ran Zhang, Thomas Auzinger, Duygu Ceylan, Wilmot Li, and Bernd Bickel. 2017. Functionality-aware Retargeting of Mechanisms to 3D Shapes. ACM Trans. Graph. 36, 4, Article 81 (July 2017), 13 pages. Google ScholarDigital Library

ACM Digital Library Publication:

Overview Page: