“Simulation and optimization of magnetoelastic thin shells” by Chen, Ni, Zhu, Wang and Chen

  • ©Xuwen Chen, Xingyu Ni, Bo Zhu, Bin Wang, and Baoquan Chen




    Simulation and optimization of magnetoelastic thin shells



    Magnetoelastic thin shells exhibit great potential in realizing versatile functionalities through a broad range of combination of material stiffness, remnant magnetization intensity, and external magnetic stimuli. In this paper, we propose a novel computational method for forward simulation and inverse design of magnetoelastic thin shells. Our system consists of two key components of forward simulation and backward optimization. On the simulation side, we have developed a new continuum mechanics model based on the Kirchhoff-Love thin-shell model to characterize the behaviors of a megnetolelastic thin shell under external magnetic stimuli. Based on this model, we proposed an implicit numerical simulator facilitated by the magnetic energy Hessian to treat the elastic and magnetic stresses within a unified framework, which is versatile to incorporation with other thin shell models. On the optimization side, we have devised a new differentiable simulation framework equipped with an efficient adjoint formula to accommodate various PDE-constraint, inverse design problems of magnetoelastic thin-shell structures, in both static and dynamic settings. It also encompasses applications of magnetoelastic soft robots, functional Origami, artworks, and meta-material designs. We demonstrate the efficacy of our framework by designing and simulating a broad array of magnetoelastic thin-shell objects that manifest complicated interactions between magnetic fields, materials, and control policies.


    1. Jernej Barbič, Funshing Sin, and Eitan Grinspun. 2012. Interactive editing of deformable simulations. ACM Transactions on Graphics (TOG) 31, 4 (2012), 1–8.Google ScholarDigital Library
    2. Miklos Bergou, Max Wardetzky, David Harmon, Denis Zorin, and Eitan Grinspun. 2006. Discrete Quadratic Curvature Energies. In ACM SIGGRAPH 2006 Courses (Boston, Massachusetts) (SIGGRAPH ’06). Association for Computing Machinery, New York, NY, USA, 20–29.Google Scholar
    3. R. Bridson, S. Marino, and R. Fedkiw. 2003. Simulation of Clothing with Folds and Wrinkles. In Proceedings of the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer Animation (San Diego, California) (SCA ’03). Eurographics Association, Goslar, DEU, 28–36.Google Scholar
    4. Jared T Bruton, Todd G Nelson, Trent K Zimmerman, Janette D Fernelius, Spencer P Magleby, and Larry L Howell. 2016. Packing and deploying Soft Origami to and from cylindrical volumes with application to automotive airbags. Royal Society open science 3, 9 (2016), 160429.Google ScholarCross Ref
    5. Oleksiy Busaryev, Tamal K Dey, and Huamin Wang. 2013. Adaptive fracture simulation of multi-layered thin plates. ACM Transactions on Graphics (TOG) 32, 4 (2013), 1–6.Google ScholarDigital Library
    6. Hsiao-Yu Chen, Arnav Sastry, Wim M. van Rees, and Etienne Vouga. 2018. Physical Simulation of Environmentally Induced Thin Shell Deformation. ACM Trans. Graph. 37, 4, Article 146 (jul 2018), 13 pages.Google ScholarDigital Library
    7. Zhen Chen, Hsiao-Yu Chen, Danny M. Kaufman, Mélina Skouras, and Etienne Vouga. 2021. Fine Wrinkling on Coarsely Meshed Thin Shells. ACM Trans. Graph. 40, 5, Article 190 (aug 2021), 32 pages.Google ScholarDigital Library
    8. H Christopher Frey and Sumeet R Patil. 2002. Identification and review of sensitivity analysis methods. Risk analysis 22, 3 (2002), 553–578.Google Scholar
    9. Fehmi Cirak, Michael Ortiz, and Peter Schröder. 2000. Subdivision Surfaces: A New Paradigm For Thin-Shell Finite-Element Analysis. Internat. J. Numer. Methods Engrg. 47 (2000), 2039–2072.Google ScholarCross Ref
    10. Xiangxin Dang, Fan Feng, Paul Plucinsky, Richard D James, Huiling Duan, and Jianxiang Wang. 2022. Inverse design of deployable origami structures that approximate a general surface. International Journal of Solids and Structures 234 (2022), 111224.Google ScholarCross Ref
    11. A Dorfmann and RW2008258 Ogden. 2003. Magnetoelastic modelling of elastomers. European Journal of Mechanics-A/Solids 22, 4 (2003), 497–507.Google ScholarCross Ref
    12. Luis Dorfmann and Ray W. Ogden. 2014. Nonlinear Theory of Electroelastic and Magnetoelastic Interactions. Springer, Heidelberg, Germany.Google Scholar
    13. Tao Du, Kui Wu, Pingchuan Ma, Sebastien Wah, Andrew Spielberg, Daniela Rus, and Wojciech Matusik. 2021. DiffPD: Differentiable Projective Dynamics. ACM Trans. Graph. 41, 2, Article 13 (Oct. 2021), 21 pages.Google Scholar
    14. Tao Du, Kui Wu, Andrew Spielberg, Wojciech Matusik, Bo Zhu, and Eftychios Sifakis. 2020. Functional Optimization of Fluidic Devices with Differentiable Stokes Flow. ACM Trans. Graph. 39, 6, Article 197 (Dec. 2020), 15 pages.Google ScholarDigital Library
    15. Levi H Dudte, Etienne Vouga, Tomohiro Tachi, and Lakshminarayanan Mahadevan. 2016. Programming curvature using origami tessellations. Nature materials 15, 5 (2016), 583–588.Google Scholar
    16. Mehdi Eshaghi, Mohsen Ghasemi, and Korosh Khorshidi. 2021. Design, manufacturing and applications of small-scale magnetic soft robots. Extreme Mechanics Letters 44 (2021), 101268.Google ScholarCross Ref
    17. C. Daniel Freeman, Erik Frey, Anton Raichuk, Sertan Girgin, Igor Mordatch, and Olivier Bachem. 2021. Brax – A Differentiable Physics Engine for Large Scale Rigid Body Simulation. arXiv:2106.13281 [cs.RO]Google Scholar
    18. Daniel Garcia-Gonzalez. 2019. Magneto-visco-hyperelasticity for hard-magnetic soft materials: theory and numerical applications. Smart Materials and Structures 28, 8 (2019), 085020.Google ScholarCross Ref
    19. Moritz Geilinger, David Hahn, Jonas Zehnder, Moritz Niklaus Bacher, B. Thomaszewski, and Stelian Coros. 2020. ADD: Analytically Differentiable Dynamics for Multi-Body Systems with Frictional Contact. ACM Trans. Graph. 39 (2020), 190:1–190:15.Google ScholarDigital Library
    20. Ali Ghaffari, Seyed Hassan Hashemabadi, and Mansour Bazmi. 2015. CFD simulation of equilibrium shape and coalescence of ferrofluid droplets subjected to uniform magnetic field. Colloids and Surfaces A: Physicochemical and Engineering Aspects 481 (2015), 186–198.Google ScholarCross Ref
    21. Yotam Gingold, Adrian Secord, Jefferson Y Han, Eitan Grinspun, and Denis Zorin. 2004. A discrete model for inelastic deformation of thin shells. In ACM SIGGRAPH/Eurographics Symposium on Computer Animation (Grenoble, France). Eurographics Association, Goslar, DEU, 1–12.Google Scholar
    22. A.E. Green and P.M. Naghdi. 1968. The linear elastic cosserat surface and shell theory. International Journal of Solids and Structures 4, 6 (1968), 585–592.Google ScholarCross Ref
    23. Eitan Grinspun, Yotam Gingold, Jason Reisman, and Denis Zorin. 2006. Computing discrete shape operators on general meshes. Computer Graphics Forum 25, 3 (2006), 547–556.Google ScholarCross Ref
    24. Eitan Grinspun, Anil N. Hirani, Mathieu Desbrun, and Peter Schröder. 2003. Discrete Shells. In Proceedings of the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer Animation (San Diego, California) (SCA ’03). Eurographics Association, Goslar, DEU, 62–67.Google Scholar
    25. Qi Guo, Xuchen Han, Chuyuan Fu, Theodore Gast, Rasmus Tamstorf, and Joseph Teran. 2018. A material point method for thin shells with frictional contact. ACM Transactions on Graphics (TOG) 37, 4 (2018), 1–15.Google ScholarDigital Library
    26. David Hahn, Pol Banzet, James Bern, and Stelian Coros. 2019. Real2Sim: visco-elastic parameter estimation from dynamic motion. ACM Trans. Graph. 38 (11 2019), 1–13.Google ScholarDigital Library
    27. Philipp Holl, Vladlen Koltun, Kiwon Um, and Nils Thuerey. 2020. phiflow: A differentiable pde solving framework for deep learning via physical simulations. In Thirty-fourth Workshop on Neural Information Processing Systems. The Neural Information Processing Systems Foundation, Virtual, 1–5.Google Scholar
    28. Wenqi Hu, Guo Zhan Lum, Massimo Mastrangeli, and Metin Sitti. 2018. Small-scale soft-bodied robot with multimodal locomotion. Nature 554, 7690 (2018), 81–85.Google Scholar
    29. Yuanming Hu, Jiancheng Liu, Andrew Spielberg, Joshua B. Tenenbaum, William T. Freeman, Jiajun Wu, Daniela Rus, and Wojciech Matusik. 2019. ChainQueen: A Real-Time Differentiable Physical Simulator for Soft Robotics. In 2019 International Conference on Robotics and Automation (ICRA). IEEE, Montreal, Canada, 6265–6271.Google Scholar
    30. Libo Huang, Torsten Hädrich, and Dominik L. Michels. 2019. On the Accurate Large-scale Simulation of Ferrofluids. ACM Trans. Graph. 38, 4, Article 93 (July 2019), 15 pages.Google ScholarDigital Library
    31. Libo Huang and Dominik L. Michels. 2020. Surface-Only Ferrofluids. ACM Trans. Graph. 39, 6, Article 174 (Nov. 2020), 17 pages.Google ScholarDigital Library
    32. Tomokazu Ishikawa, Yonghao Yue, Kei Iwasaki, Yoshinori Dobashi, and Tomoyuki Nishita. 2013. Visual Simulation of Magnetic Fluid Using a Procedural Approach for Spikes Shape. In Computer Vision, Imaging and Computer Graphics. Theory and Application. Springer Berlin Heidelberg, Berlin, Heidelberg, 112–126.Google Scholar
    33. Shunta Kashima, Fumikazu Miyasaka, and Katsuhiro Hirata. 2012. Novel soft actuator using magnetorheological elastomer. IEEE Transactions on magnetics 48, 4 (2012), 1649–1652.Google ScholarCross Ref
    34. Seung-wook Kim and JungHyun Han. 2020. Simulation of Arbitrarily-shaped Magnetic Objects. Computer Graphics Forum 39, 7 (2020), 119–130.Google ScholarCross Ref
    35. Seung-Wook Kim, Sun Young Park, and Junghyun Han. 2018. Magnetization Dynamics for Magnetic Object Interactions. ACM Trans. Graph. 37, 4, Article 121 (July 2018), 13 pages.Google ScholarDigital Library
    36. Yoonho Kim, German A. Parada, Shengduo Liu, and Xuanhe Zhao. 2019. Ferromagnetic soft continuum robots. Science Robotics 4, 33 (2019), eaax7329.Google Scholar
    37. Siwang Li, Jin Huang, Fernando de Goes, Xiaogang Jin, Hujun Bao, and Mathieu Desbrun. 2014. Space-time editing of elastic motion through material optimization and reduction. ACM Transactions on Graphics (TOG) 33, 4 (2014), 1–10.Google ScholarDigital Library
    38. Junbang Liang, Ming Lin, and Vladlen Koltun. 2019. Differentiable Cloth Simulation for Inverse Problems. In Advances in Neural Information Processing Systems, Vol. 32. Curran Associates, Inc., Vancouver, Canada.Google Scholar
    39. Ke Liu, Felix Hacker, and Chiara Daraio. 2021. Robotic surfaces with reversible, spatiotemporal control for shape morphing and object manipulation. Science Robotics 6, 53 (2021), Art-No.Google Scholar
    40. Mickaël Ly, Romain Casati, Florence Bertails-Descoubes, Mélina Skouras, and Laurence Boissieux. 2018. Inverse elastic shell design with contact and friction. ACM Transactions on Graphics (TOG) 37, 6 (2018), 1–16.Google ScholarDigital Library
    41. Pingchuan Ma, Tao Du, John Z Zhang, Kui Wu, Andrew Spielberg, Robert K Katzschmann, and Wojciech Matusik. 2021. DiffAqua: A Differentiable Computational Design Pipeline for Soft Underwater Swimmers with Shape Interpolation. ACM Transactions on Graphics (TOG) 40, 4 (2021), 132.Google ScholarDigital Library
    42. Luigi Malomo, Jesús Pérez, Emmanuel Iarussi, Nico Pietroni, Eder Miguel, Paolo Cignoni, and Bernd Bickel. 2018. FlexMaps: Computational Design of Flat Flexible Shells for Shaping 3D Objects. ACM Trans. Graph. 37, 6, Article 241 (dec 2018), 14 pages. Google ScholarDigital Library
    43. Pierre-Luc Manteaux, Wei-Lun Sun, François Faure, Marie-Paule Cani, and James F. O’Brien. 2015. Interactive Detailed Cutting of Thin Sheets. In Proceedings of the 8th ACM SIGGRAPH Conference on Motion in Games (Paris, France) (MIG ’15). Association for Computing Machinery, New York, NY, USA, 125–132.Google Scholar
    44. Sebastian Martin, Peter Kaufmann, Mario Botsch, Eitan Grinspun, and Markus Gross. 2010. Unified Simulation of Elastic Rods, Shells, and Solids. ACM Trans. Graph. 29, 4, Article 39 (jul 2010), 10 pages.Google ScholarDigital Library
    45. Antoine McNamara, Adrien Treuille, Zoran Popović, and Jos Stam. 2004. Fluid Control Using the Adjoint Method. In ACM SIGGRAPH 2004 Papers (SIGGRAPH ’04). Association for Computing Machinery, New York, NY, USA, 449–456.Google Scholar
    46. Sehee Min, Jungdam Won, Seunghwan Lee, Jungnam Park, and Jehee Lee. 2019. SoftCon. ACM Trans. Graph. 38 (2019), 1–12.Google ScholarDigital Library
    47. Rahul Narain, Tobias Pfaff, and James F. O’Brien. 2013. Folding and Crumpling Adaptive Sheets. ACM Trans. Graph. 32, 4, Article 51 (jul 2013), 8 pages.Google ScholarDigital Library
    48. Rahul Narain, Armin Samii, and James F. O’Brien. 2012. Adaptive Anisotropic Remeshing for Cloth Simulation. ACM Trans. Graph. 31, 6, Article 152 (nov 2012), 10 pages.Google ScholarDigital Library
    49. Xingyu Ni, Bo Zhu, Bin Wang, and Baoquan Chen. 2020. A Level-Set Method for Magnetic Substance Simulation. ACM Trans. Graph. 39, 4, Article 29 (jul 2020), 15 pages.Google ScholarDigital Library
    50. Larissa S Novelino, Qiji Ze, Shuai Wu, Glaucio H Paulino, and Ruike Zhao. 2020. Untethered control of functional origami microrobots with distributed actuation. Proceedings of the National Academy of Sciences 117, 39 (2020), 24096–24101.Google ScholarCross Ref
    51. Zherong Pan and Dinesh Manocha. 2018. Active Animations of Reduced Deformable Models with Environment Interactions. ACM Trans. Graph. 37, 3, Article 36 (aug 2018), 17 pages.Google ScholarDigital Library
    52. Julian Panetta, Florin Isvoranu, Tian Chen, Emmanuel Siéfert, Benoît Roman, and Mark Pauly. 2021. Computational Inverse Design of Surface-Based Inflatables. ACM Trans. Graph. 40, 4, Article 40 (jul 2021), 14 pages. Google ScholarDigital Library
    53. J. Panetta, M. Konaković-Luković, F. Isvoranu, E. Bouleau, and M. Pauly. 2019. X-Shells: A New Class of Deployable Beam Structures. ACM Trans. Graph. 38, 4, Article 83 (jul 2019), 15 pages. Google ScholarDigital Library
    54. Jesús Pérez, Miguel A. Otaduy, and Bernhard Thomaszewski. 2017. Computational Design and Automated Fabrication of Kirchhoff-Plateau Surfaces. ACM Trans. Graph. 36, 4, Article 62 (jul 2017), 12 pages. Google ScholarDigital Library
    55. Matteo Pezzulla, Dong Yan, and Pedro M. Reis. 2021. A geometrically exact model for thin magneto-elastic shells.Google Scholar
    56. Tobias Pfaff, Rahul Narain, Juan Miguel De Joya, and James F O’Brien. 2014. Adaptive tearing and cracking of thin sheets. ACM Trans. Graph. 33, 4 (2014), 1–9.Google ScholarDigital Library
    57. Yi-Ling Qiao, Junbang Liang, Vladlen Koltun, and Ming Lin. 2020. Scalable Differentiable Physics for Learning and Control. In Proceedings of the 37th International Conference on Machine Learning (Proceedings of Machine Learning Research, Vol. 119). PMLR, Virtual, 7847–7856.Google Scholar
    58. Olivier Rémillard and Paul G Kry. 2013. Embedded thin shells for wrinkle simulation. ACM Transactions on Graphics (TOG) 32, 4 (2013), 1–8.Google ScholarDigital Library
    59. Connor Schenck and Dieter Fox. 2018. SPNets: Differentiable Fluid Dynamics for Deep Neural Networks. In Proceedings of The 2nd Conference on Robot Learning (Proceedings of Machine Learning Research, Vol. 87). PMLR, Zrich, Switzerland, 317–335.Google Scholar
    60. Christian Schulz, Christoph von Tycowicz, Hans-Peter Seidel, and Klaus Hildebrandt. 2014. Animating deformable objects using sparse spacetime constraints. ACM Transactions on Graphics (TOG) 33, 4 (2014), 1–10.Google ScholarDigital Library
    61. Georg Sperl, Rahul Narain, and Chris Wojtan. 2020. Homogenized yarn-level cloth. ACM Trans. Graph. 39, 4 (2020), 48.Google ScholarDigital Library
    62. Yuchen Sun, Xingyu Ni, Bo Zhu, Bin Wang, and Baoquan Chen. 2021. A Material Point Method for Nonlinearly Magnetized Materials. ACM Trans. Graph. 40, 6, Article 205 (dec 2021), 13 pages.Google ScholarDigital Library
    63. Krister Svanberg. 2002. A Class of Globally Convergent Optimization Methods Based on Conservative Convex Separable Approximations. SIAM Journal on Optimization 12 (2002), 555–573.Google ScholarDigital Library
    64. Rasmus Tamstorf and Eitan Grinspun. 2013. Discrete Bending Forces and Their Jacobians. Graph. Models 75, 6 (nov 2013), 362–370.Google ScholarDigital Library
    65. Demetri Terzopoulos, John Platt, Alan Barr, and Kurt Fleischer. 1987. Elastically Deformable Models. In Proceedings of the 14th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH ’87). Association for Computing Machinery, New York, NY, USA, 205–214.Google ScholarDigital Library
    66. Bernhard Thomaszewski, Andreas Gumann, Simon Pabst, and Wolfgang Straßer. 2008. Magnets in Motion. ACM Trans. Graph. 27, 5, Article 162 (Dec. 2008), 9 pages.Google ScholarDigital Library
    67. Wim M van Rees, Etienne Vouga, and Lakshminarayanan Mahadevan. 2017. Growth patterns for shape-shifting elastic bilayers. Proceedings of the National Academy of Sciences 114, 44 (2017), 11597–11602.Google ScholarCross Ref
    68. Bin Wang, Longhua Wu, KangKang Yin, Uri Ascher, Libin Liu, and Hui Huang. 2015. Deformation Capture and Modeling of Soft Objects. ACM Trans. Graph. 34, 4, Article 94 (jul 2015), 12 pages.Google ScholarDigital Library
    69. Liu Wang, Yoonho Kim, Chuan Fei Guo, and Xuanhe Zhao. 2020a. Hard-magnetic elastica. Journal of the Mechanics and Physics of Solids 142 (2020), 104045.Google ScholarCross Ref
    70. Weiming Wang, Dirk Munro, Charlie CL Wang, Fred van Keulen, and Jun Wu. 2020b. Space-time topology optimization for additive manufacturing. Structural and Multi-disciplinary Optimization 61, 1 (2020), 1–18.Google ScholarDigital Library
    71. Keenon Werling, Dalton Omens, Jeongseok Lee, Ioannis Exarchos, and C Karen Liu. 2021. Fast and Feature-Complete Differentiable Physics Engine for Articulated Rigid Bodies with Contact Constraints. In Proceedings of Robotics: Science and Systems. The RSS Foundation, Virtual, 15.Google ScholarCross Ref
    72. Andrew Witkin and Michael Kass. 1988. Spacetime Constraints. In Proceedings of the 15th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH ’88). Association for Computing Machinery, New York, NY, USA, 159–168.Google Scholar
    73. Tianqi Xu, Jiachen Zhang, Mohammad Salehizadeh, Onaizah Onaizah, and Eric Diller. 2019. Millimeter-scale flexible robots with programmable three-dimensional magnetization and motions. Science Robotics 4, 29 (2019), eaav4494.Google Scholar
    74. Dong Yan, Matteo Pezzulla, Lilian Cruveiller, Arefeh Abbasi, and Pedro M Reis. 2021. Magneto-active elastic shells with tunable buckling strength. Nature communications 12, 1 (2021), 1–9.Google Scholar
    75. Yi Yang, Katherine Vella, and Douglas P Holmes. 2021. Grasping with kirigami shells. Science Robotics 6, 54 (2021), eabd6426.Google Scholar
    76. Ruike Zhao, Yoonho Kim, Shawn A. Chester, Pradeep Sharma, and Xuanhe Zhao. 2019. Mechanics of hard-magnetic soft materials. Journal of the Mechanics and Physics of Solids 124 (2019), 244–263.Google ScholarCross Ref
    77. Xuanhe Zhao, Jaeyun Kim, Christine A Cezar, Nathaniel Huebsch, Kangwon Lee, Kamal Bouhadir, and David J Mooney. 2011. Active scaffolds for on-demand drug and cell delivery. Proceedings of the National Academy of Sciences 108, 1 (2011), 67–72.Google ScholarCross Ref
    78. Bo Zhu, Mélina Skouras, Desai Chen, and Wojciech Matusik. 2017. Two-Scale Topology Optimization with Microstructures. ACM Trans. Graph. 36, 5, Article 164 (jul 2017), 16 pages.Google ScholarDigital Library
    79. Yufeng Zhu, Robert Bridson, and Chen Greif. 2015. Simulating Rigid Body Fracture with Surface Meshes. ACM Trans. Graph. 34, 4, Article 150 (jul 2015), 11 pages.Google ScholarDigital Library
    80. Shannon A. Zirbel, Robert J. Lang, Mark W. Thomson, Deborah A. Sigel, Phillip E. Walkemeyer, Brian P. Trease, Spencer P. Magleby, and Larry L. Howell. 2013. Accommodating thickness in origami-based deployable arrays. Journal of Mechanical Design 135, 11 (2013), 11.Google ScholarCross Ref

ACM Digital Library Publication:

Overview Page: