“Rigid-body fracture sound with precomputed soundbanks” by Zheng and James

  • ©Changxi Zheng and Doug L. James

Conference:


Type:


Title:

    Rigid-body fracture sound with precomputed soundbanks

Presenter(s)/Author(s):



Abstract:


    We propose a physically based algorithm for synthesizing sounds synchronized with brittle fracture animations. Motivated by laboratory experiments, we approximate brittle fracture sounds using time-varying rigid-body sound models. We extend methods for fracturing rigid materials by proposing a fast quasistatic stress solver to resolve near-audio-rate fracture events, energy-based fracture pattern modeling and estimation of “crack”-related fracture impulses. Multipole radiation models provide scalable sound radiation for complex debris and level of detail control. To reduce soundmodel generation costs for complex fracture debris, we propose Precomputed Rigid-Body Soundbanks comprised of precomputed ellipsoidal sound proxies. Examples and experiments are presented that demonstrate plausible and affordable brittle fracture sounds.

References:


    1. Bao, Z., Hong, J.-M., Teran, J., and Fedkiw, R. 2007. Fracturing rigid materials. IEEE Transactions on Visualization and Computer Graphics, 14, 370–378. Google ScholarDigital Library
    2. Bielser, D., Glardon, P., Teschner, M., and Gross, M. H. 2004. A state machine for real-time cutting of tetrahedral meshes. Graphical Models 66, 6, 398–417. Google ScholarDigital Library
    3. Bonet, J., and Wood, R. D. 1997. Nonlinear Continuum Mechanics for Finite Element Analysis. Cambridge University Press.Google Scholar
    4. Bonneel, N., Drettakis, G., Tsingos, N., Viaud-Delmon, I., and James, D. 2008. Fast modal sounds with scalable frequency-domain synthesis. ACM Transactions on Graphics 27, 3 (Aug.), 24:1–24:9. Google ScholarDigital Library
    5. Carpinteri, A., and Lacidogna, G. 2007. Earthquakes and Acoustic Emission. Taylor & Francis.Google Scholar
    6. Chadwick, J. N., An, S. S., and James, D. L. 2009. Harmonic Shells: A practical nonlinear sound model for near-rigid thin shells. ACM Trans. Graph. 28, 5, 1–10. Google ScholarDigital Library
    7. Cook, P. 1997. Physically Informed Sonic Modeling (PhISM): Synthesis of percussive sounds. Computer Music Journal, 38–49.Google Scholar
    8. Dobashi, Y., Yamamoto, T., and Nishita, T. 2003. Real-time rendering of aerodynamic sound using sound textures based on computational fluid dynamics. ACM Transactions on Graphics 22, 3 (July), 732–740. Google ScholarDigital Library
    9. Doel, K., Knott, D., and Pai, D. 2004. Interactive simulation of complex audiovisual scenes. Presence: Teleoperators & Virtual Environments 13, 1, 99–111. Google ScholarDigital Library
    10. Dunegan, H., Harris, D., and Tatro, C. 1968. Fracture analysis by use of acoustic emission. Eng Fracture Mechanics 1, 1.Google ScholarCross Ref
    11. Golub, G. H., and Van Loan, C. F. 1996. Matrix Computations, 3rd ed. Johns Hopkins University Press, Baltimore, MD, USA. Google ScholarDigital Library
    12. Gross, D., and Seeling, T. 2006. Fracture mechanics: with an introduction to micromechanics. Springer.Google Scholar
    13. Gross, S., Fineberg, J., Marder, M., McCormick, W., and Swinney, H. 1993. Acoustic emissions from rapidly moving cracks. Physical review letters 71, 19, 3162–3165.Google Scholar
    14. Grosse, C., and Ohtsu, M. 2008. Acoustic Emission Testing. Springer Verlag.Google Scholar
    15. Guendelman, E., Bridson, R., and Fedkiw, R. 2003. Non-convex rigid bodies with stacking. In Proc. ACM SIGGRAPH, 871–878. Google ScholarDigital Library
    16. Gumerov, N. A., and Duraiswami, R. 2004. Fast Multipole Methods for the Helmholtz Equation in Three Dimensions, first ed. Elsevier Science.Google Scholar
    17. Hahn, J., Fouad, H., Gritz, L., and Lee, J. 1998. Integrating sounds and motions in virtual environments. Presence 7, 1, 67–77. Google ScholarDigital Library
    18. Hamming, R. W. 1983. Digital Filters. Prentice-Hall.Google Scholar
    19. Harris, M. 2007. Optimizing Parallel Reduction in CUDA. NVIDIA Developer Technology.Google Scholar
    20. Hellrung, J., Selle, A., Shek, A., Sifakis, E., and Teran, J. 2009. Geometric fracture modeling in Bolt. In SIGGRAPH 2009: Talks, ACM, New York, NY, USA, 1–1. Google ScholarDigital Library
    21. Imagire, T., Johan, H., and Nishita, T. 2009. A fast method for simulating destruction and the generated dust and debris. The Visual Computer 25, 5–7 (May), 719–727. Google ScholarDigital Library
    22. James, D. L., and Pai, D. K. 2002. DyRT: Dynamic response textures for real time deformation simulation with graphics hardware. In Proc. ACM SIGGRAPH, ACM, New York, NY, USA, 582–585. Google ScholarDigital Library
    23. James, D. L., and Pai, D. K. 2004. BD-Tree: Output-sensitive collision detection for reduced deformable models. ACM Transactions on Graphics 23, 3 (Aug.), 393–398. Google ScholarDigital Library
    24. James, D. L., Barbic, J., and Pai, D. K. 2006. Precomputed Acoustic Transfer: Output-sensitive, accurate sound generation for geometrically complex vibration sources. ACM Transactions on Graphics 25, 3 (July), 987–995. Google ScholarDigital Library
    25. Labelle, F., and Shewchuk, J. R. 2007. Isosurface stuffing: Fast tetrahedral meshes with good dihedral angles. ACM Transactions on Graphics 26, 3 (July), 57:1–57:10. Google ScholarDigital Library
    26. Lehoucq, R., Sorensen, D., and Yang, C. 1998. ARPACK Users’ Guide: Solution of large-scale eigenvalue problems with implicitly restarted Arnoldi methods. SIAM.Google Scholar
    27. Li, Z., and Bazant, Z. 1998. Acoustic emissions in fracturing sea ice plate simulated by particle system. Journal of Engineering Mechanics 124, 1, 69–79.Google ScholarCross Ref
    28. L’iu, Y. J. 2009. Fast Multipole Boundary Element Method: Theory and Applications in Engineering. Cambridge University Press.Google Scholar
    29. Lockner, D., Byerlee, J., Kuksenko, V., Ponomarev, A., and Sidorin, A. 1991. Quasi-static fault growth and shear fracture energy in granite. Nature 350 (March), 39–42.Google ScholarCross Ref
    30. Lockner, D. 1993. The role of acoustic emission in the study of rock fracture. In Intl. J. Rock Mech. Mining Sci., vol. 30, Pergamon, 883–889.Google ScholarCross Ref
    31. Luyten, H., and Vliet, T. 2006. Acoustic emission, fracture behavior and morphology of dry crispy foods: A discussion article. Journal of Texture Studies 37, 3, 221–240.Google ScholarCross Ref
    32. McAdams, S., Chaigne, A., and Roussarie, V. 2004. The psychomechanics of simulated sound sources: Material properties of impacted bars. The Journal of the Acoustical Society of America 115, 3, 1306–1320.Google ScholarCross Ref
    33. Molino, N., Bao, Z., and Fedkiw, R. 2004. A virtual node algorithm for changing mesh topology during simulation. ACM Transactions on Graphics 23, 3 (Aug.), 385–392. Google ScholarDigital Library
    34. Morse, P., and Ingard, K. 1986. Theoretical Acoustics. Princeton University Press.Google Scholar
    35. Müller, M., Dorsey, J., and McMillan, L. 2001. Real-time simulation of deformation and fracture of stiff materials. In Eurographics Computer Animation and Simulation, SpringerVerlag Wien, 113–124. Google ScholarDigital Library
    36. Norton, A., Turk, G., Bacon, B., Gerth, J., and Sweeney, P. 1991. Animation of fracture by physical modeling. The Visual Computer 7, 4, 210–219. Google ScholarDigital Library
    37. O’Brien, J. F., and Hodgins, J. K. 1999. Graphical modeling and animation of brittle fracture. In SIGGRAPH 99, Computer Graphics Proceedings, Annual Conference Series, 137–146. Google ScholarDigital Library
    38. O’Brien, J. F., Cook, P. R., and Essl, G. 2001. Synthesizing sounds from physically based motion. In Proceedings of ACM SIGGRAPH 2001, Computer Graphics Proceedings, Annual Conference Series, 529–536. Google ScholarDigital Library
    39. O’Brien, J. F., Bargteil, A. W., and Hodgins, J. K. 2002. Graphical modeling and animation of ductile fracture. ACM Transactions on Graphics 21, 3 (July), 291–294. Google ScholarDigital Library
    40. O’Brien, J. F., Shen, C., and Gatchalian, C. M. 2002. Synthesizing sounds from rigid-body simulations. In 2002 ACM SIGGRAPH / Eurographics Symposium on Computer Animation, 175–182. Google ScholarDigital Library
    41. Ochmann, M. 1995. The Source Simulation Technique for Acoustic Radiation Problems. Acustica 81.Google Scholar
    42. Pai, D. K., van den Doel, K., James, D. L., Lang, J., Lloyd, J. E., Richmond, J. L., and Yau, S. H. 2001. Scanning physical interaction behavior of 3d objects. In ACM SIGGRAPH 2001, Computer Graphics Proceedings, Annual Conference Series, 87–96. Google ScholarDigital Library
    43. Paige, C. C., and Saunders, M. A. 1975. Solution of sparse indefinite systems of linear equations. SIAM J. Numerical Analysis 12, 617–629.Google ScholarCross Ref
    44. Parker, E. G., and O’Brien, J. F. 2009. Real-time deformation and fracture in a game environment. In SCA ’09: Proc. 2009 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, ACM, New York, NY, USA, 165–175. Google ScholarDigital Library
    45. Pauly, M., Keiser, R., Adams, B., Dutré, P., Gross, M., and Guibas, L. J. 2005. Meshless animation of fracturing solids. ACM Transactions on Graphics 24, 3 (Aug.), 957–964. Google ScholarDigital Library
    46. Pentland, A., and Williams, J. 1989. Good Vibrations: Modal Dynamics for Graphics and Animation. In Computer Graphics (Proceedings of SIGGRAPH 89), vol. 23, 215–222. Google ScholarDigital Library
    47. Picard, C., Tsingos, N., and Faure, F. 2009. Retargetting example sounds to interactive physics-driven animations. In AES 35th International Conference on Audio for Games.Google Scholar
    48. Press, W., Teukolsky, S., Vetterling, W., and Flannery, B. 2007. Numerical Recipes: The art of scientific computing. Cambridge University Press. Google ScholarDigital Library
    49. Raghavachary, S. 2002. Fracture generation on polygonal meshes using Voronoi polygons. In ACM SIGGRAPH 2002 Conference Abstracts and Applications, ACM, New York, NY, USA, 187–187. Google ScholarDigital Library
    50. Raghuvanshi, N., and Lin, M. C. 2006. Interactive Sound Synthesis for Large Scale Environments. In SI3D ’06: Proceedings of the 2006 symposium on Interactive 3D graphics and games, ACM Press, New York, NY, USA, 101–108. Google ScholarDigital Library
    51. Rocchesso, D., and Fontana, F., Eds. 2003. The Sounding Object. Edizioni di Mondo Estremo, Florence, Italy, ch. Highlevel models: bouncing, breaking, rolling, crumpling, pouring (by M. Rath and F. Fontana), 186–187.Google Scholar
    52. Shabana, A. A. 1990. Theory of Vibration, Volume II: Discrete and Continuous Systems. Springer-Verlag, New York, NY.Google Scholar
    53. Smith, J., Witkin, A., and Baraff, D. 2000. Fast and control-lable simulation of the shattering of brittle objects. In Graphics Interface, Blackwell Publishing, 27–34.Google Scholar
    54. Su, J., Schroeder, C., and Fedkiw, R. 2009. Energy stability and fracture for frame rate rigid body simulations. In SCA ’09: Proc. 2009 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, ACM, New York, NY, USA, 155–164. Google ScholarDigital Library
    55. Takala, T., and Hahn, J. 1992. Sound rendering. In Computer Graphics (Proceedings of SIGGRAPH 92), 211–220. Google ScholarDigital Library
    56. Terzopoulos, D., and Fleischer, K. 1988. Modeling inelastic deformation: Viscoelasticity, plasticity, fracture. In Computer Graphics (Proceedings of SIGGRAPH 88), 269–278. Google ScholarDigital Library
    57. Trebien, F., and Oliveira, M. M. 2009. Realistic real-time sound re-synthesis and processing for interactive virtual worlds. The Visual Computer 25, 5–7 (May), 469–477. Google ScholarDigital Library
    58. Tsingos, N., Gallo, E., and Drettakis, G. 2004. Perceptual audio rendering of complex virtual environments. ACM Transactions on Graphics 23, 3 (Aug.), 249–258. Google ScholarDigital Library
    59. van den Doel, K., and Pai, D. K. 1996. Synthesis of shape dependent sounds with physical modeling. In Intl Conf. on Auditory Display.Google Scholar
    60. van den Doel, K., Kry, P. G., and Pai, D. K. 2001. FoleyAutomatic: Physically-Based Sound Effects for Interactive Simulation and Animation. In ACM SIGGRAPH 2001, Computer Graphics Proceedings, Annual Conference Series, 537–544. Google ScholarDigital Library
    61. Warren, W., and Verbrugge, R. 1984. Auditory perception of breaking and bouncing events: A case study in ecological acoustics. Journal of Experimental Psychology 10, 5, 704–712.Google ScholarCross Ref
    62. Zheng, C., and James, D. L. 2009. Harmonic Fluids. ACM Transactions on Graphics 28, 3 (July), 37:1–37:12. Google ScholarDigital Library


ACM Digital Library Publication:



Overview Page: