“Projective dynamics: fusing constraint projections for fast simulation” by Bouaziz, Martin, Liu, Kavan and Pauly
Conference:
Type:
Session Title:
- Stretching & Flowing
Title:
- Projective dynamics: fusing constraint projections for fast simulation
Moderator(s):
Presenter(s)/Author(s):
Abstract:
We present a new method for implicit time integration of physical systems. Our approach builds a bridge between nodal Finite Element methods and Position Based Dynamics, leading to a simple, efficient, robust, yet accurate solver that supports many different types of constraints. We propose specially designed energy potentials that can be solved efficiently using an alternating optimization approach. Inspired by continuum mechanics, we derive a set of continuum-based potentials that can be efficiently incorporated within our solver. We demonstrate the generality and robustness of our approach in many different applications ranging from the simulation of solids, cloths, and shells, to example-based simulation. Comparisons to Newton-based and Position Based Dynamics solvers highlight the benefits of our formulation.
References:
1. Baraff, D., and Witkin, A. 1998. Large steps in cloth simulation. In Proc. of ACM SIGGRAPH. Google ScholarDigital Library
2. Bender, J., Müller, M., Otaduy, M. A., and Teschner, M. 2013. Position-based methods for the simulation of solid objects in computer graphics. In EG State of the Art Reports.Google Scholar
3. Bergou, M., Wardetzky, M., Harmon, D., Zorin, D., and Grinspun, E. 2006. A quadratic bending model for inextensible surfaces. In Proc. EG Symp. Geometry Processing. Google ScholarDigital Library
4. Botsch, M., Kobbelt, L., Pauly, M., Alliez, P., and Levy, B. 2010. Polygon Mesh Processing. AK Peters.Google Scholar
5. Bouaziz, S., Deuss, M., Schwartzburg, Y., Weise, T., and Pauly, M. 2012. Shape-up: Shaping discrete geometry with projections. In Comput. Graph. Forum. Google ScholarDigital Library
6. Boyd, S. P., and Vandenberghe, L. 2004. Convex optimization. Cambridge university press. Google ScholarDigital Library
7. Bridson, R., Marino, S., and Fedkiw, R. 2003. Simulation of clothing with folds and wrinkles. In Proc. EG Symp. Computer Animation. Google ScholarDigital Library
8. Chao, I., Pinkall, U., Sanan, P., and Schröder, P. 2010. A simple geometric model for elastic deformations. ACM Trans. Graph.. Google ScholarDigital Library
9. Desbrun, M., Schröder, P., and Barr, A. 1999. Interactive animation of structured deformable objects. In Graphics Interface. Google ScholarDigital Library
10. Garg, A., Grinspun, E., Wardetzky, M., and Zorin, D. 2007. Cubic shells. In Proc. EG Symp. Computer Animation. Google ScholarDigital Library
11. Goldenthal, R., Harmon, D., Fattal, R., Bercovier, M., and Grinspun, E. 2007. Efficient simulation of inextensible cloth. ACM Trans. Graph.. Google ScholarDigital Library
12. Grinspun, E., Hirani, A. N., Desbrun, M., and Schröder, P. 2003. Discrete shells. In Proc. EG Symp. Computer Animation. Google ScholarDigital Library
13. Häggström, O. 2009. Interactive Real Time Cloth Simulation with Adaptive Level of Detail. Master’s thesis.Google Scholar
14. Hahn, F., Martin, S., Thomaszewski, B., Sumner, R., Coros, S., and Gross, M. 2012. Rig-space physics. ACM Trans. Graph.. Google ScholarDigital Library
15. Hairer, E., Lubich, C., and Wanner, G. 2002. Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations. Springer.Google Scholar
16. Harmon, D., Vouga, E., Smith, B., Tamstorf, R., and Grinspun, E. 2009. Asynchronous contact mechanics. In ACM Trans. Graph. Google ScholarDigital Library
17. Hecht, F., Lee, Y. J., Shewchuk, J. R., and O’brien, J. F. 2012. Updated sparse cholesky factors for corotational elastodynamics. ACM Trans. Graph.. Google ScholarDigital Library
18. Hernandez, F., Cirio, G., Perez, A. G., and Otaduy, M. A. 2013. Anisotropic strain limiting. In Proc. of Congreso Español de Informática Gráfica.Google Scholar
19. Hughes, T. J. R. 2000. The Finite Element Method. Linear Static and Dynamic Finite Element Analysis. Dover Publications.Google Scholar
20. Irving, G., Teran, J., and Fedkiw, R. 2004. Invertible finite elements for robust simulation of large deformation. In Proc. EG Symp. Computer Animation. Google ScholarDigital Library
21. Jones, B., Popovic, J., McCann, J., Li, W., and Bargteil, A. 2013. Dynamic sprites. In Proceedings of the Motion on Games. Google ScholarDigital Library
22. Kharevych, L., Yang, W., Tong, Y., Kanso, E., Marsden, J. E., Schröder, P., and Desbrun, M. 2006. Geometric, variational integrators for computer animation. In Proc. EG Symp. Computer Animation. Google ScholarDigital Library
23. Koyama, Y., Takayama, K., Umetani, N., and Igarashi, T. 2012. Real-time example-based elastic deformation. In Proc. EG Symp. Computer Animation. Google ScholarDigital Library
24. Liu, T., Bargteil, A. W., O’Brien, J. F., and Kavan, L. 2013. Fast simulation of mass-spring systems. ACM Trans. Graph.. Google ScholarDigital Library
25. Macklin, M., and Müller, M. 2013. Position based fluids. ACM Trans. Graph.. Google ScholarDigital Library
26. Martin, S., Thomaszewski, B., Grinspun, E., and Gross, M. 2011. Example-based elastic materials. In ACM Trans. Graph. Google ScholarDigital Library
27. McAdams, A., Zhu, Y., Selle, A., Empey, M., Tamstorf, R., Teran, J., and Sifakis, E. 2011. Efficient elasticity for character skinning with contact and collisions. ACM Trans. Graph.. Google ScholarDigital Library
28. Müller, M., Heidelberger, B., Teschner, M., and Gross, M. 2005. Meshless deformations based on shape matching. In ACM Trans. Graph. Google ScholarDigital Library
29. Müller, M., Heidelberger, B., Hennix, M., and Ratcliff, J. 2007. Position based dynamics. J. Vis. Comun. Image Represent.. Google ScholarDigital Library
30. Myles, A., and Zorin, D. 2012. Global parametrization by incremental flattening. ACM Trans. Graph.. Google ScholarDigital Library
31. Narain, R., Samii, A., and O’Brien, J. F. 2012. Adaptive anisotropic remeshing for cloth simulation. ACM Trans. Graph.. Google ScholarDigital Library
32. Nocedal, J., and Wright, S. J. 2006. Numerical optimization. Springer Verlag.Google Scholar
33. Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. 2007. Numerical recipes 3rd edition: The art of scientific computing. Cambridge university press. Google ScholarDigital Library
34. Provot, X. 1995. Deformation constraints in a mass-spring model to describe rigid cloth behavior. In Graphics Interface.Google Scholar
35. Rivers, A., and James, D. 2007. FastLSM: fast lattice shape matching for robust real-time deformation. ACM Trans. Graph.. Google ScholarDigital Library
36. Sifakis, E., and Barbic, J. 2012. Fem simulation of 3d deformable solids: A practitioner’s guide to theory, discretization and model reduction. In ACM SIGGRAPH Courses. Google ScholarDigital Library
37. Sorkine, O., and Alexa, M. 2007. As-rigid-as-possible surface modeling. In Proc. EG Symp. Geometry Processing. Google ScholarDigital Library
38. Stam, J. 2009. Nucleus: towards a unified dynamics solver for computer graphics. In IEEE Int. Conf. on CAD and Comput. Graph.Google ScholarCross Ref
39. Stern, A., and Grinspun, E. 2009. Implicit-explicit variational integration of highly oscillatory problems. Multiscale Modeling & Simulation.Google Scholar
40. Su, J., Sheth, R., and Fedkiw, R. 2013. Energy conservation for the simulation of deformable bodies. IEEE Trans. Vis. Comput. Graph.. Google ScholarDigital Library
41. Terzopoulos, D., Platt, J., Barr, A., and Fleischer, K. 1987. Elastically deformable models. In Computer Graphics (Proceedings of SIGGRAPH). Google ScholarDigital Library
42. Thomaszewski, B., Pabst, S., and Strasser, W. 2009. Continuum-based strain limiting. In Comput. Graph. Forum.Google Scholar
43. Wang, H., O’Brien, J., and Ramamoorthi, R. 2010. Multi-resolution isotropic strain limiting. ACM Trans. Graph.. Google ScholarDigital Library