“Practical animation of liquids” by Foster and Fedkiw

  • ©Nick Foster and Ronald P. Fedkiw

Conference:


Type(s):


Title:

    Practical animation of liquids

Presenter(s)/Author(s):



Abstract:


    We present a general method for modeling and animating liquids. The system is specifically designed for computer animation and handles viscous liquids as they move in a 3D environment and interact with graphics primitives such as parametric curves and moving polygons. We combine an appropriately modified semi-Lagrangian method with a new approach to calculating fluid flow around objects. This allows us to efficiently solve the equations of motion for a liquid while retaining enough detail to obtain realistic looking behavior. The object interaction mechanism is extended to provide control over the liquid s 3D motion. A high quality surface is obtained from the resulting velocity field using a novel adaptive technique for evolving an implicit surface.

References:


    1. Abbot, M. and Basco, D., “Computational Fluid Dynamics – An Introduction for Engineers”, Longman, 1989.
    2. Barrett, R., Berry, M., Chan, T., Demmel, J., Donato, J., Dongarra, J., Eijkhout, V., Pozo, R., Romine, C. and van der Vorst, H., “Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods”, Society for Industrial and Applied Mathematics, 1993.
    3. Bloomenthal, J., Bajaj, C., Blinn, J., Cani-Gascual, M.-P., Rockwood, A., Wyvill, B. and Wyvill, G., “Introduction to Implicit Surfaces”, Morgan Kaufmann Publishers Inc., San Francisco, 1997.
    4. Chen, J. and Lobo, N., “Toward Interactive-Rate Simulation of Fluids with Moving Obstacles Using the Navier-Stokes Equations”, Graphical Models and Image Processing 57, 107-116 (1994).
    5. Chen, S., Johnson, D., Raad, P. and Fadda, D., “The Surface Marker and Micro Cell Method”, Int. J. Numer. Methods in Fluids 25, 749-778 (1997).
    6. Courant, R., Issacson, E. and Rees, M., “On the Solution of Nonlinear Hyperbolic Differential Equations by Finite Differences”, Comm. Pure and Applied Math 5, 243-255 (1952).
    7. Desbrun, M. and Cani-Gascuel, M.P., “Active Implicit Surface for Animation”, Graphics Interface 98, 143-150 (1998).
    8. Fedkiw, R., Aslam, T., Merriman, B. and Osher, S., “A Non-Oscillatory Eulerian Approach to Interfaces in Multimaterial Flows (The Ghost Fluid Method)”, J. Comput. Phys. 152, 457-492 (1999).
    9. Foster, N. and Metaxas, D., “Controlling Fluid Animation”, Computer Graphics International 97, 178-188 (1997).
    10. Foster, N. and Metaxas, D., “Modeling the Motion of a Hot Turbulent Gas”, ACM SIGGRAPH 97, 181-188 (1997).
    11. Foster, N. and Metaxas, D., “Realistic Animation of Liquids”, Graphical Models and Image Processing 58, 471- 483 (1996).
    12. Fournier, A. and Reeves, W.T., “A Simple Model of Ocean Waves”, ACM SIGGRAPH 86, 75-84 (1986).
    13. Gates, W.F., “Interactive Flow Field Modeling for the Design and Control of Fluid Motion in Computer Animation”, UBC CS Master’s Thesis, 1994.
    14. Golub, G.H. and Van Loan, C.F., “Matrix Computations”, The John Hopkins University Press, 1996.
    15. Harlow, F.H. and Welch, J.E., “Numerical Calculation of Time-Dependent Viscous Incompressible Flow of Fluid with a Free Surface”, The Physics of Fluids 8, 2182-2189 (1965).
    16. Kang, M., Fedkiw, R. and Liu, X.-D., “A Boundary Condition Capturing Method For Multiphase Incompressible Flow”, J. Sci. Comput. 15, 323-360 (2000).
    17. Kass, M. and Miller, G., “Rapid, Stable Fluid Dynamics for Computer Graphics”, ACM SIGGRAPH 90, 49-57 (1990).
    18. Lorenson, W.E. and Cline, H.E., “Marching Cubes: A High Resolution 3D Surface Construction Algorithm”, Computer Graphics 21, 163-169 (1987).
    19. Miller, G. and Pearce, A., “Globular Dynamics: A Connected Particle System for Animating Viscous Fluids”, Computers and Graphics 13, 305-309 (1989).
    20. O’Brien, J. and Hodgins, J., “Dynamic Simulation of Splashing Fluids”, Computer Animation 95, 198-205 (1995).
    21. Osher, S. and Sethian, J.A., “Fronts Propagating with Curvature Dependent Speed: Algorithms Based on Hamilton-Jacobi Formulations”, J. Comput. Phys. 79, 12-49 (1988).
    22. Peachy, D., “Modeling Waves and Surf”, ACM SIGGRAPH 86, 65-74 (1986).
    23. Schachter, B., “Long Crested Wave Models”, Computer Graphics and Image Processing 12, 187-201 (1980).
    24. Sethian, J.A. “Level Set Methods and Fast Marching Methods”, Cambridge University Press, Cambridge 1999.
    25. Stam, J., “Stable Fluids”, ACM SIGGRAPH 99, 121-128 (1999).
    26. Staniforth, A. and Cote, J., “Semi-Lagrangian Integration Schemes for Atmospheric Models – A Review”, Monthly Weather Review 119, 2206-2223 (1991).
    27. Terzopoulos, D., Platt, J. and Fleischer, K., “Heating and Melting Deformable Models (From Goop to Glop)”, Graphics Interface 89, 219-226 (1995).
    28. Yngve, G., O’Brien, J. and Hodgins, J., “Animating Explosions”, ACM SIGGRAPH 00, 29-36 (2000).


ACM Digital Library Publication:



Overview Page: