“Physics-driven pattern adjustment for direct 3D garment editing”

  • ©Aric Bartle, Vladimir G. Kim, Danny M. Kaufman, Alla Sheffer, Floraine Berthouzoz, and Nicholas Vining




    Physics-driven pattern adjustment for direct 3D garment editing


Session Title: CLOTH



    Designers frequently reuse existing designs as a starting point for creating new garments. In order to apply garment modifications, which the designer envisions in 3D, existing tools require meticulous manual editing of 2D patterns. These 2D edits need to account both for the envisioned geometric changes in the 3D shape, as well as for various physical factors that affect the look of the draped garment. We propose a new framework that allows designers to directly apply the changes they envision in 3D space; and creates the 2D patterns that replicate this envisioned target geometry when lifted into 3D via a physical draping simulation. Our framework removes the need for laborious and knowledge-intensive manual 2D edits and allows users to effortlessly mix existing garment designs as well as adjust for garment length and fit. Following each user specified editing operation we first compute a target 3D garment shape, one that maximally preserves the input garment’s style-its proportions, fit and shape-subject to the modifications specified by the user. We then automatically compute 2D patterns that recreate the target garment shape when draped around the input mannequin within a user-selected simulation environment. To generate these patterns, we propose a fixed-point optimization scheme that compensates for the deformation due to the physical forces affecting the drape and is independent of the underlying simulation tool used. Our experiments show that this method quickly and reliably converges to patterns that, under simulation, form the desired target look, and works well with different black-box physical simulators. We demonstrate a range of edited and resimulated garments, and further validate our approach via expert and amateur critique, and comparisons to alternative solutions.


    1. Assembil. 2013. How Patterns Work: The Fundamental Principles of Pattern Making and Sewing in Fashion Design. Assembil Books.Google Scholar
    2. Berthouzoz, F., Garg, A., Kaufman, D., Grinspun, E., and Agrawala, M. 2013. Parsing sewing patterns into 3d garments. ACM Transactions on Graphics 32, 4, 85. Google ScholarDigital Library
    3. Bertsekas, D. P. 1999. Nonlinear Programming. Athena Scientific.Google Scholar
    4. Botsch, M., Kobbelt, L., Pauly, M., Alliez, P., and Levy, B. 2010. Polygon Mesh Processing. AK Peters.Google Scholar
    5. Bridson, R., Marino, S., and Fedkiw, R. 2003. Simulation of clothing with folds and wrinkles. In Proc. Symp. on Computer Animation, 28–36. Google ScholarDigital Library
    6. Brouet, R., Sheffer, A., Boissieux, L., and Cani, M.-P. 2012. Design Preserving Garment Transfer. SIGGRAPH. Google ScholarDigital Library
    7. Brown, P. K., and Rice, J. 2001. Ready-to-wear apparel analysis. Prentice Hall.Google Scholar
    8. Chen, X., Zheng, C., Xu, W., and Zhou, K. 2014. An asymptotic numerical method for inverse elastic shape design. ACM Transactions on Graphics 33, 4. Google ScholarDigital Library
    9. Cignoni, P., Rocchini, C., and Scopigno, R. 1998. Metro: Measuring Error on Simplified Surfaces. Comp. Graph. Forum.Google Scholar
    10. Cordier, F., Seo, H., and Magnenat-Thalmann, N. 2003. Made-to-measure technologies for an online clothing store. Comp. Graph. and App. 23, 38–48. Google ScholarDigital Library
    11. Decaudin, P., Julius, D., Wither, J., Boissieux, L., Sheffer, A., and Cani, M.-P. 2006. Virtual garments: A fully geometric approach for clothing design. In CGF, vol. 25.Google Scholar
    12. Derouet-Jourdan, A., Bertails-Descoubes, F., and Thollot, J. 2010. Stable inverse dynamic curves. ACM Transactions on Graphics 29, 6. Google ScholarDigital Library
    13. Derouet-Jourdan, A., Bertails-Descoubes, F., Daviet, G., and Thollot, J. 2013. Inverse dynamic hair modeling with frictional contact. ACM Transactions on Graphics 32, 6. Google ScholarDigital Library
    14. Fontana, M., Carubelli, A., Rizzi, C., and Cugini, U. 2005. Clothassembler: a cad module for feature-based garment pattern assembly. CAD & Applications 2, 6.Google Scholar
    15. Funkhouser, T., Kazhdan, M., Shilane, P., Min, P., Kiefer, W., Tal, A., Rusinkiewicz, S., and Dobkin, D. 2004. Modeling by example. In ACM Trans. on Graph., vol. 23. Google ScholarDigital Library
    16. Furuta, Y., Umetani, N., Mitani, J., Igarashi, T., and Fukui, Y. 2010. A Film Balloon Design System Integrated with Shell Element Simulation. In Eurographics 2010.Google Scholar
    17. Harmon, D., Panozzo, D., Sorkine, O., and Zorin, D. 2011. Interference aware geometric modeling. ACM Transactions on Graphics 30, 6. Google ScholarDigital Library
    18. Hu, J. 2004. Structure and Mechanics of Woven Fabrics. Woodhead Publishing Series in Textiles. Elsevier Science.Google Scholar
    19. Kraevoy, V., Sheffer, A., Cohen-Or, D., and Shamir, A. 2008. Non-homogeneous resizing of complex models. In ACM Trans. Graphics. Google ScholarDigital Library
    20. Kwok, T. H., Zhang, Y. Q., Wang, C. C. L., Liu, Y. J., and Tang, K. 2016. Styling evolution for tight-fitting garments. IEEE Trans. Visualization & Computer Graphics 22, 5. Google ScholarDigital Library
    21. Li, J., and Lu, G. 2014. Modeling 3d garments by examples. Computer-Aided Design 49, 28–41. Google ScholarDigital Library
    22. Liu, L., Zhang, L., Xu, Y., Gotsman, C., and Gortler, S. J. 2008. A local/global approach to mesh parameterization. Computer Graphics Forum (Proc. SGP) 27, 5, 1495–1504. Google ScholarDigital Library
    23. Meng, Y., Wang, C. C., and Jin, X. 2012. Flexible shape control for automatic resizing of apparel products. CAD. Google ScholarDigital Library
    24. Mori, Y., and Igarashi, T. 2007. Plushie: An interactive design system for plush toys. ACM Transactions on Graphics 26, 3. Google ScholarDigital Library
    25. Müller, M., Heidelberger, B., Hennix, M., and Ratcliff, J. 2007. Position based dynamics. J. Vis. Comun. Image Represent. 18, 2, 109–118. Google ScholarDigital Library
    26. Narain, R., Samii, A., and O’Brien, J. F. 2012. Adaptive anisotropic remeshing for cloth simulation. ACM Trans. on Graphics 31, 6, 147:1–10. Google ScholarDigital Library
    27. Narain, R., Pfaff, T., and O’Brien, J. F. 2013. Folding and crumpling adaptive sheets. Trans. on Graphics 32, 4. Google ScholarDigital Library
    28. Robson, C., Maharik, R., Sheffer, A., and Carr, N. 2011. Context-aware garment modeling from sketches. Computers & Graphics 35, 3, 604–613. Google ScholarDigital Library
    29. Schittkowski, K. 2002. Numerical Data Fitting in Dynamical Systems: A Practical Introduction with Applications and Software. No. v. 1 in Applied Optimization. Springer. Google ScholarDigital Library
    30. Sheffer, A., Lévy, B., Mogilnitsky, M., and Bogomyakov, A. 2005. Abf++: fast and robust angle based flattening. ACM Trans. Graph. 24 (April), 311–330. Google ScholarDigital Library
    31. Shin, H. V., Porst, C. F., Vouga, E., Ochsendorf, J., and Durand, F. 2016. Reconciling elastic and equilibrium methods for static analysis. ACM Transactions on Graphics, To Appear. Google ScholarDigital Library
    32. Skouras, M., Thomaszewski, B., Kaufmann, P., Garg, A., Bickel, B., Grinspun, E., and Gross, M. 2014. Designing inflatable structures. ACM Trans. Graph. 33, 4. Google ScholarDigital Library
    33. Sorkine, O., and Alexa, M. 2007. As-rigid-as-possible surface modeling. Proc. Symposium on Geometry Processing. Google ScholarDigital Library
    34. Stoll, C., Gall, J., de Aguiar, E., Thrun, S., and Theobalt, C. 2010. Video-based reconstruction of animatable human characters. ACM Trans. Graph. 29, 6 (Dec.). Google ScholarDigital Library
    35. Turquin, E., Wither, J., Boissieux, L., Cani, M.-P., and Hughes, J. F. 2007. A sketch-based interface for clothing virtual characters. CG & A, IEEE 27, 1, 72–81. Google ScholarDigital Library
    36. Twigg, C. D., and Kačić-Alesić, Z. 2011. Optimization for sag-free simulations. In Proc. Symp. on Computer Animation. Google ScholarDigital Library
    37. Umetani, N., Kaufman, D. M., Igarashi, T., and Grinspun, E. 2011. Sensitive couture for interactive garment modeling and editing. ACM Trans. Graph. 30, 4, 90. Google ScholarDigital Library
    38. Volino, P., Cordier, F., and Magnenat-thalmann, N. 2005. From early virtual garment simulation to interactive fashion design. CAD 37. Google ScholarDigital Library
    39. Wang, C. C., Wang, Y., and Yuen, M. M. 2003. Feature based 3d garment design through 2d sketches. CAD.Google Scholar
    40. Wang, C. C. L., Wang, Y., and Yuen, M. M. F. 2005. Design automation for customized apparel products. CAD 37. Google ScholarDigital Library
    41. Yumer, M. E., Chaudhuri, S., Hodgins, J. K., and Kara, L. B. 2015. Semantic shape editing using deformation handles. ACM Trans. Graphics 34. Google ScholarDigital Library
    42. Zeng, S., Zhou, F., Wang, R., and Luo, X. 2014. Probabilistic model for virtual garment modeling. In IGTA, vol. 437.Google Scholar
    43. Zolésio, J. S.-J. 1992. Introduction to Shape Optimization: Shape Sensitivity Analysis. Springer.Google Scholar

ACM Digital Library Publication: