“Physics-inspired adaptive fracture refinement” by Chen, Yao, Feng and Wang

  • ©Zhili Chen, Miaojun Yao, Renguo Feng, and Huamin Wang




    Physics-inspired adaptive fracture refinement

Session/Category Title: Mesh-Based Simulation




    Physically based animation of detailed fracture effects is not only computationally expensive, but also difficult to implement due to numerical instability. In this paper, we propose a physics-inspired approach to enrich low-resolution fracture animation by realistic fracture details. Given a custom-designed material strength field, we adaptively refine a coarse fracture surface into a detailed one, based on a discrete gradient descent flow. Using the new fracture surface, we then generate a high-resolution fracture animation with details on both the fracture surface and the exterior surface. Our experiment shows that this approach is simple, fast, and friendly to user design and control. It can generate realistic fracture animations within a few seconds.


    1. Baker, M., Carlson, M., Coumans, E., Criswell, B., Harada, T., Knight, P., and Zafar, N. B. 2011. Destruction and dynamic artist tools for film and game production. In ACM SIGGRAPH 2011 course notes.Google Scholar
    2. Bao, Z., Hong, J.-M., Teran, J., and Fedkiw, R. 2007. Fracturing rigid materials. IEEE Transactions on Visualization and Computer Graphics 13, 2 (Mar.), 370–378. Google ScholarDigital Library
    3. Bojsen-Hansen, M., and Wojtan, C. 2013. Liquid surface tracking with error compensation. ACM Trans. Graph. (SIGGRAPH) 32, 4 (July), 68:1–68:13. Google ScholarDigital Library
    4. Bridson, R., Fedkiw, R., and Anderson, J. 2002. Robust treatment of collisions, contact and friction for cloth animation. ACM Trans. Graph. (SIGGRAPH) 21, 3 (July), 594–603. Google ScholarDigital Library
    5. Busaryev, O., Dey, T. K., and Wang, H. 2013. Adaptive fracture simulation of multi-layered thin plates. ACM Trans. Graph. (SIGGRAPH) 32, 4 (July), 52:1–52:6. Google ScholarDigital Library
    6. Chen, Z., Feng, R., and Wang, H. 2013. Modeling friction and air effects between cloth and deformable bodies. ACM Trans. Graph. (SIGGRAPH) 32, 4 (July), 88:1–88:8. Google ScholarDigital Library
    7. Clausen, P., Wicke, M., Shewchuk, J. R., and O’Brien, J. F. 2013. Simulating liquids and solid-liquid interactions with lagrangian meshes. ACM Trans. Graph. 32, 2 (Apr.), 17:1–15. Google ScholarDigital Library
    8. Delaunoy, A., and Prados, E. 2011. Gradient flows for optimizing triangular mesh-based surfaces: Applications to 3D reconstruction problems dealing with visibility. International Journal of Computer Vision 95, 2, 100–123. Google ScholarDigital Library
    9. Eckstein, I., Pons, J.-P., Tong, Y., Kuo, C.-C. J., and Desbrun, M. 2007. Generalized surface flows for mesh processing. In Proc. of SGP, 183–192. Google ScholarDigital Library
    10. Hegemann, J., Jiang, C., Schroeder, C., and Teran, J. M. 2013. A level set method for ductile fracture. In Proc. of SCA, 193–201. Google ScholarDigital Library
    11. Jin, H., Yezzi, A. J., and Soatto, S. 2004. Region-based segmentation on evolving surfaces with application to 3D reconstruction of shape and piecewise constant radiance. In ECCV, 114–125.Google Scholar
    12. Kaufmann, P., Martin, S., Botsch, M., Grinspun, E., and Gross, M. 2009. Enrichment textures for detailed cutting of shells. ACM Trans. Graph. (SIGGRAPH) 28, 3 (July), 50:1–50:10. Google ScholarDigital Library
    13. Kopf, J., Fu, C.-W., Cohen-Or, D., Deussen, O., Lischinski, D., and Wong, T.-T. 2007. Solid texture synthesis from 2D exemplars. ACM Trans. Graph. (SIGGRAPH) 26, 3 (July). Google ScholarDigital Library
    14. Lenkiewicz, P., Pereira, M., Freire, M. M., and Fernandes, J. 2009. The whole mesh deformation model for 2D and 3D image segmentation. In ICIP, IEEE, 4045–4048. Google ScholarDigital Library
    15. Lowe, D. G. 2004. Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vision 60, 2 (Nov.), 91–110. Google ScholarDigital Library
    16. Martin, S., Kaufmann, P., Botsch, M., Wicke, M., and Gross, M. 2008. Polyhedral finite elements using harmonic basis functions. In Proc. of SGP, 1521–1529. Google ScholarDigital Library
    17. Meyer, M., Desbrun, M., Schroder, P., and Barr, A. H. 2002. Discrete differential-geometry operators for triangulated 2-manifolds. In VisMath, Springer-Verlag, 35–57.Google Scholar
    18. Molino, N., Bao, Z., and Fedkiw, R. 2004. A virtual node algorithm for changing mesh topology during simulation. ACM Trans. Graph. (SIGGRAPH) 23, 3 (Aug.), 385–392. Google ScholarDigital Library
    19. Mould, D. 2005. Image-guided fracture. In Proceedings of Graphics Interface 2005, GI ’05, 219–226. Google ScholarDigital Library
    20. Müller, M., and Gross, M. 2004. Interactive virtual materials. In Proceedings of Graphics Interface 2004, GI ’04, 239–246. Google ScholarDigital Library
    21. Müller, M., McMillan, L., Dorsey, J., and Jagnow, R. 2001. Real-time simulation of deformation and fracture of stiff materials. In Proc. of SCA, 113–124. Google ScholarDigital Library
    22. Müller, M., Dorsey, J., McMillan, L., Jagnow, R., and Cutler, B. 2002. Stable real-time deformations. In Proc. of SCA, 49–54. Google ScholarDigital Library
    23. Müller, M., Chentanez, N., and Kim, T.-Y. 2013. Real time dynamic fracture with volumetric approximate convex decompositions. ACM Trans. Graph. (SIGGRAPH) 32, 4 (July), 115:1–115:10. Google ScholarDigital Library
    24. Müller, M. 2008. Hierarchical position based dynamics. In VRIPHYS, 1–10.Google Scholar
    25. Narain, R., Samii, A., and O’Brien, J. F. 2012. Adaptive anisotropic remeshing for cloth simulation. ACM Trans. Graph. (SIGGRAPH Asia) 31, 6 (Nov.), 152:1–152:10. Google ScholarDigital Library
    26. Narain, R., Pfaff, T., and O’Brien, J. F. 2013. Folding and crumpling adaptive sheets. ACM Trans. Graph. (SIGGRAPH) 32, 4 (July), 51:1–51:8. Google ScholarDigital Library
    27. Naylor, B., Amanatides, J., and Thibault, W. 1990. Merging BSP trees yields polyhedral set operations. SIGGRAPH Comput. Graph. 24, 4 (Sept.), 115–124. Google ScholarDigital Library
    28. O’Brien, J. F., and Hodgins, J. K. 1999. Graphical modeling and animation of brittle fracture. In Proc. of SIGGRAPH 98, Annual Conference Series, 137–146. Google ScholarDigital Library
    29. O’Brien, J. F., Bargteil, A. W., and Hodgins, J. K. 2002. Graphical modeling and animation of ductile fracture. ACM Trans. Graph. (SIGGRAPH) 21, 3 (July), 291–294. Google ScholarDigital Library
    30. Osher, S. J., and Fedkiw, R. P. 2002. Level Set Methods and Dynamic Implicit Surfaces. Springer-Verlag.Google Scholar
    31. Parker, E. G., and O’Brien, J. F. 2009. Real-time deformation and fracture in a game environment. In Proc. of SCA, 165–175. Google ScholarDigital Library
    32. Pauly, M., Keiser, R., Adams, B., Dutré, P., Gross, M., and Guibas, L. J. 2005. Meshless animation of fracturing solids. ACM Trans. Graph. (SIGGRAPH) 24, 3 (July), 957–964. Google ScholarDigital Library
    33. Raghavachary, S. 2002. Fracture generation on polygonal meshes using voronoi polygons. In ACM SIGGRAPH 2002 Conference Abstracts and Applications, SIGGRAPH ’02, 187–187. Google ScholarDigital Library
    34. Sifakis, E., Der, K. G., and Fedkiw, R. 2007. Arbitrary cutting of deformable tetrahedralized objects. In Proc. of SCA, 73–80. Google ScholarDigital Library
    35. Steinemann, D., Otaduy, M. A., and Gross, M. 2006. Fast arbitrary splitting of deforming objects. In Proc. of SCA, 63–72. Google ScholarDigital Library
    36. Su, J., Schroeder, C., and Fedkiw, R. 2009. Energy stability and fracture for frame rate rigid body simulations. In Proc. of SCA, 155–164. Google ScholarDigital Library
    37. Sumner, R. W., and Popović, J. 2004. Deformation transfer for triangle meshes. ACM Trans. Graph. (SIGGRAPH) 23, 3 (Aug.), 399–405. Google ScholarDigital Library
    38. Wicke, M., Steinemann, D., and Gross, M. H. 2005. Efficient animation of point-sampled thin shells. Computer Graphics Forum (Eurographics) 24, 3, 667–676.Google ScholarCross Ref
    39. Wicke, M., Botsch, M., and Gross, M. 2007. A finite element method on convex polyhedra. Computer Graphics Forum (Eurographics) 26, 3, 355–364.Google ScholarCross Ref
    40. Wojtan, C., Thürey, N., Gross, M., and Turk, G. 2010. Physics-inspired topology changes for thin fluid features. ACM Trans. Graph. (SIGGRAPH) 29, 4 (July), 50:1–50:8. Google ScholarDigital Library
    41. Zheng, C., and James, D. L. 2010. Rigid-body fracture sound with precomputed soundbanks. ACM Trans. Graph. (SIGGRAPH) 29, 4 (July), 69:1–69:13. Google ScholarDigital Library

ACM Digital Library Publication:

Overview Page: