“Normal meshes” by Guskov, Vidimče, Sweldens and Schröder

  • ©Igor Guskov, Kiril Vidimče, Wim Sweldens, and Peter Schröder




    Normal meshes



    Normal meshes are new fundamental surface descriptions inspired by differential geometry. A normal mesh is a multiresolution mesh where each level can be written as a normal offset from a coarser version. Hence the mesh can be stored with a single float per vertex. We present an algorithm to approximate any surface arbitrarily closely with a normal semi-regular mesh. Normal meshes can be useful in numerous applications such as compression, filtering, rendering, texturing, and modeling.


    1. CERTAIN, A., POPOVIC, J., DEROSE, T., DtJCHAMP, T., SALESIN, D., AND STUETZLE, W. Interactive Multiresolution Surface Viewing. Proceedings of S1GGRAPH 96 (1996), 91 98.
    2. COHEN, J., OLANO, M., AND MANO( HA, D. Appearance-Preserving Simplification. Proceedings of S1GGRA PH 98 (1998), 115122.
    3. COOK, R. L. Shade trees. Computer Graphics (Proceedings of S1GGRAPH84) 8, 3 (1984), 223 231.
    4. DAUBECtlIES, I., GUSKOV, I., AND SWELDENS, W. Regularity of Irregular Subdivision. Constr. Approx. 15 (1999), 381426.
    5. DESBRUN, M., MEYER, M., SCIIRODER, P., AND BARR, A. H. Implicit Fairing of Irregular Meshes Using Diffusion and Curvature Flow. Proceedings of” S1GGRAPH 99 (1999), 317324.
    6. DONOHO, D. L. Interpolating wavelet transforms. Preprint, Department of Statistics, Stanford University, 1992.
    7. DONOtlO, D. L. Unconditional Bases are Optimal Bases for Data Compression and for Statistical Estimation. AppL Comput. Harmon. Anal l (1993), 100115.
    8. DYN, N., LEVIN, D., AND GREGORY, J. A. A Butterfly Subdivision Scheme for Surface Interpolation with Tension Control. ACM Transactions on Graphics 9, 2 (1990), 160169.
    9. ECK, M., DEROSE, T., DUCIIAMP, T., HOPPE, H., LOUNSBERY, M., AND STUETZLE, W. Multiresolution Analysis of Arbitrary Meshes. Proceedings” of S1GGRAPH 95 (1995), 173 182.
    10. FLOATER, M. S. Pammeterization and Smooth Appmximation of Surface Triangulations. Computer Aided Geometric Design l 4 (1997), 231 250.
    11. GARLAND, M., AND HECKBERT, P. S. Surface Simplification Using Quadric Error Metrics. In Proceedings of S1GGRAPH 96, 209216, 1996.
    12. GOLUB, G. H., AND LOAN, C. F. V. Matrix Computations, 2nd ed. The John Hopkins University Press, Baltimore, 1983.
    13. GUSKOV, 1., SWELDENS, W., AND SCtlRODER, P. Multiresolution Signal Processing for Meshes. Proceedings of S1GGRAPH 99 (1999), 325334.
    14. KIIODAKOVSKY; A., SCtlRODER, P., SWELDENS, W. Progressive Geometry Compression. Proceedings q/’SIGGRAPH 2000 (2000).
    15. KRIStlNAMURrtlY, V., AND LEVOY, M. Fitting Smooth Surfaces to Dense Polygon Meshes. Proceedings ofS1GGRA PH 96 (1996), 313 324.
    16. LEE, A. W. F., DOBK{N, D., SWELDENS, W., AND SCHRODER, P. Multiresolution Mesh Morphing. Proceedings of S1GGRAPH 99 (1999), 343350.
    17. LEE, A. W. F., MORETON, H., HOPPE, H. Displaced Subdivision Surfaces. Proceedings of SIGGRAPH O0 (2000).
    18. LEE, A. W. F., NWELDENS, W., SCIIRODER, P., COWSAR, L., AND DOBKIN, D. MAPS: Multiresolution Adaptive Pammeterization of Surfaces. Proceedings oJ’S1GGRAPH 98 (1998), 95104.
    19. LEVOY, M. The Digital Michelangelo Project. In Proceedings” of the 2nd International [email protected] on 3D Digital Imaging and Modeling, October 1999.
    20. LEVY, B., AND MALLET, J. Non-Distorted Texture Mapping for Sheared Triangulated Meshes. Proceedings q/’S1GGRAPH 98 (1998), 343352.
    21. LOUNSBERY, M., DEROSE, T. D., AND WARREN, J. Multiresolution Analysis for Surfaces of Arbitrary Topological Type. ACM Transactions on Graphics 16, 1 (1997), 3473. Originally available as TR-93-10-05, October, 1993, Department of Computer Science and Engineering, University of Washington.
    22. SC~tRODER, R, AND SWELDENS, W. Spherical Wavelets: Efficiently Representing Functions on the Sphere. Proceedings of S1GGRAPH 95 (1995), 161 …. 172.
    23. ZORIN, D., AND S Ct{RODER, P., Eds. Subdivision for Modeling and Animation. Course Notes. ACM SIGGRAPH, 1999.
    24. ZORIN, D., SClIRODER, P., AND SWELDENS, W. Interpolating Subdivision for Meshes with Arbitrary Topology. Proceedings of S1GGRAPH 96 (1996), 189192.
    25. ZORIN, D., S(HR()DER, P., AND SWELDENS, W. Interactive Multiresolution Mesh Editing. Proceedings of S1GGRAPH 97 (1997), 259268.

ACM Digital Library Publication: