“Modeling and optimizing eye vergence response to stereoscopic cuts” by Templin, Didyk, Myszkowski, Hefeeda, Seidel, et al. …

  • ©Krzysztof Templin, Piotr Didyk, Karol Myszkowski, Mohamed M. Hefeeda, Hans-Peter Seidel, and Wojciech Matusik

Conference:


Type(s):


Title:

    Modeling and optimizing eye vergence response to stereoscopic cuts

Session/Category Title:   Changing Your Perception


Presenter(s)/Author(s):


Moderator(s):



Abstract:


    Sudden temporal depth changes, such as cuts that are introduced by video edits, can significantly degrade the quality of stereoscopic content. Since usually not encountered in the real world, they are very challenging for the audience. This is because the eye vergence has to constantly adapt to new disparities in spite of conflicting accommodation requirements. Such rapid disparity changes may lead to confusion, reduced understanding of the scene, and overall attractiveness of the content. In most cases the problem cannot be solved by simply matching the depth around the transition, as this would require flattening the scene completely. To better understand this limitation of the human visual system, we conducted a series of eye-tracking experiments. The data obtained allowed us to derive and evaluate a model describing adaptation of vergence to disparity changes on a stereoscopic display. Besides computing user-specific models, we also estimated parameters of an average observer model. This enables a range of strategies for minimizing the adaptation time in the audience.

References:


    1. Alvarez, T. L., Semmlow, J. L., and Pedrono, C. 2005. Divergence eye movements are dependent on initial stimulus position. Vis. Res. 45, 14, 1847–55.Google ScholarCross Ref
    2. Bernhard, M., Dellmour, C., Hecher, M., Stavrakis, E., and Wimmer, M. 2014. The effects of fast disparity adjustments in gaze-controlled stereoscopic applications. In Proc. ETRA. To appear. Google ScholarDigital Library
    3. Campbell, F. W., and Westheimer, G. 1959. Factors influencing accommodation responses of the human eye. J. Opt. Soc. Am. 49, 6, 568–71.Google ScholarCross Ref
    4. Carmi, R., and Itti, L. 2006. Visual causes versus correlates of attentional selection in dynamic scenes. Vis. Res. 46, 26, 4333–45.Google ScholarCross Ref
    5. Cutting, J., Brunick, K., Delong, J., Iricinschi, C., and Candan, A. 2011. Quicker, faster, darker: Changes in hollywood film over 75 years. i-PERCEPTION 2, 6, 569–76.Google Scholar
    6. Du, S.-P., Masia, B., Hu, S.-M., and Gutierrez, D. 2013. A metric of visual comfort for stereoscopic motion. ACM Trans. Graph. 32, 6, 222. Google ScholarDigital Library
    7. Eadie, A. S., Gray, L. S., Carlin, P., and Mon-Williams, M. 2000. Modelling adaptation effects in vergence and accommodation after exposure to a simulated virtual reality stimulus. Ophthalmic Physiol. Opt. 20, 3, 242–51.Google ScholarCross Ref
    8. Erkelens, C. J., Van der Steen, J., Steinman, R. M., and Collewijn, H. 1989. Ocular vergence under natural conditions. II. Gaze-shifts between real targets differing in distance and direction. In Proc. of the Royal. Soc., 441–6. Google ScholarDigital Library
    9. Finke, R. 1989. Principles of Mental Imagery. MIT Press.Google Scholar
    10. Heinzle, S., Greisen, P., Gallup, D., Chen, C., Saner, D., Smolic, A., Burg, A., Matusik, W., and Gross, M. H. 2011. Computational stereo camera system with programmable control loop. ACM Trans. Graph. 30, 4, 94. Google ScholarDigital Library
    11. Hoffman, D., Girshick, A., Akeley, K., and Banks, M. 2008. Vergence-accommodation conflicts hinder visual performance and cause visual fatigue. J. Vision 8, 3, 1–30.Google ScholarCross Ref
    12. Hung, G. K., Ciuffreda, K. J., Semmlow, J. L., and Hor, J.-L. 1994. Vergence eye movements under natural viewing conditions. Invest. Ophthalmol. Vis. Sci. 35, 3486–92.Google Scholar
    13. Hung, G. K. 1992. Adaptation model of accommodation and vergence. Ophthalmic Physiol. Opt. 12, 3, 319–26.Google ScholarCross Ref
    14. Hung, G. K. 1998. Dynamic model of the vergence eye movement system: Simulations using Matlab/Simulink. Computer Methods and Programs in Biomedicine 55, 1, 59–68.Google ScholarCross Ref
    15. Hung, G. K. 2001. Models of oculomotor control. World Scientific Publishing, Singapore.Google Scholar
    16. Koppal, S. J., Zitnick, C. L., Cohen, M., Kang, S. B., Ressler, B., and Colburn, A. 2011. A viewer-centric editor for 3d movies. IEEE Comput. Graph. Appl. Mag. 31, 1, 20. Google ScholarDigital Library
    17. Krishnan, V., Farazian, F., and Stark, L. 1973. An analysis of latencies and prediction in the fusional vergence system. Am. J. Optometry and Arch. Am. Academy of Optometry 50, 933–9. Google ScholarDigital Library
    18. Krishnan, V., Farazian, F., and Stark, L. 1977. Dynamic measures of vergence accommodation. American Journal of Optometrics and Physiological Optics 54, 470–3.Google ScholarCross Ref
    19. Lambooij, M., IJsselsteijn, W., Fortuin, M., and Heynderickx, I. 2009. Visual discomfort and visual fatigue of stereoscopic displays: A review. J. Imaging Sci. Technol. 53, 3, 1.Google ScholarCross Ref
    20. Lambooij, M., IJsselsteijn, W., and Heynderickx, I. 2011. Visual discomfort of 3D TV: Assessment methods and modeling. Displays 32, 4, 209–18. Visual Image Safety.Google ScholarCross Ref
    21. Lang, M., Hornung, A., Wang, O., Poulakos, S., Smolic, A., and Gross, M. 2010. Nonlinear disparity mapping for stereoscopic 3D. ACM Trans. Graph. 29, 4, 75. Google ScholarDigital Library
    22. Liu, C., Yuen, J., and Torralba, A. 2011. Sift flow: Dense correspondence across scenes and its applications. Pattern Analysis and Machine Intelligence, IEEE Transactions on 33, 5, 978–94. Google ScholarDigital Library
    23. Meesters, L., IJsselsteijn, W., and Seuntiens, P. 2004. A survey of perceptual evaluations and requirements of three-dimensional tv. Circuits and Systems for Video Technology, IEEE Transactions on 14, 3, 381–91. Google ScholarDigital Library
    24. Mendiburu, B. 2009. 3D Movie Making: Stereoscopic Digital Cinema from Script to Screen. Focal Press.Google Scholar
    25. Mital, P., Smith, T., Hill, R., and Henderson, J. 2011. Clustering of gaze during dynamic scene viewing is predicted by motion. Cognitive Computation 3, 1, 5–24.Google ScholarCross Ref
    26. Okuyama, F. 1998. Human visual accommodation and vergence eye movement while viewing stereoscopic display and actual target. In Proc. IEEE Eng. Med. Biol. Society, vol. 2, 552–5.Google Scholar
    27. Oskam, T., Hornung, A., Bowles, H., Mitchell, K., and Gross, M. H. 2011. Oscam-optimized stereoscopic camera control for interactive 3d. ACM Trans. Graph. 30, 6, 189. Google ScholarDigital Library
    28. Owens, C., 2013. Invited talk. 2nd Toronto International Stereoscopic 3D Conference.Google Scholar
    29. Rushton, S. K., and Riddell, P. M. 1999. Developing visual systems and exposure to virtual reality and stereo displays: some concerns and speculations about the demands on accommodation and vergence. Applied Ergonomics 30, 1, 69–78. Google ScholarDigital Library
    30. Schor, C. M. 1979. The relationship between fusional vergence eye movements and fixation disparity. Vis. Res. 19, 12, 1359–67.Google ScholarCross Ref
    31. Schor, C. M. 1992. The relationship between fusional vergence eye movements and fixation disparity. Optometry and Vision Science 69, 4, 258–69.Google ScholarCross Ref
    32. Schor, C. 1999. The influence of interactions between accommodation and convergence on the lag of accommodation. Ophthalmic Physiol. Opt. 19, 2, 134–50.Google ScholarCross Ref
    33. Semmlow, J., and Wetzel, P. 1979. Dynamic contributions of the components of binocular vergence. JOSA 69, 639–45.Google ScholarCross Ref
    34. Semmlow, J., Hung, G., and Ciuffreda, K. 1986. Quantitative assessment of disparity vergence components. Invest. Ophthalmol. Vis. Sci. 27, 558–64.Google Scholar
    35. Shibata, T., Kim, J., Hoffman, D. M., and Banks, M. S. 2011. The zone of comfort: Predicting visual discomfort with stereo displays. J. Vision 11, 8, 11.Google ScholarCross Ref
    36. Tam, W. J., Speranza, F., Vázquez, C., Renaud, R., and Hur, N. 2012. Visual comfort: stereoscopic objects moving in the horizontal and mid-sagittal planes. In Proc. SPIE, A. J. Woods, N. S. Holliman, and G. E. Favalora, Eds., 8288:13.Google Scholar
    37. Ukai, K., and Kato, Y. 2002. The use of video refraction to measure the dynamic properties of the near triad in observers of a 3-d display. Ophthalmic Physiol. Opt. 22, 5, 385–8.Google ScholarCross Ref
    38. Wang, H. X., Freeman, J., Merriam, E. P., Hasson, U., and Heeger, D. J. 2012. Temporal eye movement strategies during naturalistic viewing. J. Vision 12, 1, 16.Google ScholarCross Ref
    39. Watson, A. B., and Pelli, D. G. 1983. QUEST: a Bayesian adaptive psychometric method. Perception and Psychophysics 33, 2, 113–20.Google ScholarCross Ref
    40. Yano, S., Emoto, M., and Mitsuhashi, T. 2004. Two factors in visual fatigue caused by stereoscopic HDTV images. Displays 25, 4 (Nov.), 141–50.Google ScholarCross Ref
    41. Zilly, F., Kluger, J., and Kauff, P. 2011. Production rules for stereo acquisition. Proc. IEEE 99, 4, 590–606.Google ScholarCross Ref
    42. Zwicker, M., Matusik, W., Durand, F., Pfister, H., and Forlines, C. 2006. Antialiasing for automultiscopic 3D displays. In Proc. EGSR, 73–82. Google ScholarDigital Library


ACM Digital Library Publication:



Overview Page: