“Ldr2Hdr: on-the-fly reverse tone mapping of legacy video and photographs” by Rempel, Trentacoste, Seetzen, Young, Heidrich, et al. …

  • ©Allan Rempel, Matthew Trentacoste, Helge Seetzen, H. David Young, Wolfgang Heidrich, and Lorne Whitehead




    Ldr2Hdr: on-the-fly reverse tone mapping of legacy video and photographs



    New generations of display devices promise to provide significantly improved dynamic range over conventional display technology. In the long run, evolving camera technology and file formats will provide high fidelity content for these display devices. In the near term, however, the vast majority of images and video will only be available in low dynamic range formats.In this paper we describe a method for boosting the dynamic range of legacy video and photographs for viewing on high dynamic range displays. Our emphasis is on real-time processing of video streams, such as web streams or the signal from a DVD player. We place particular emphasis on robustness of the method, and its ability to deal with a wide range of content without user adjusted parameters or visible artifacts. The method can be implemented on both graphics hardware and on signal processors that are directly integrated in the HDR displays.


    1. Acosta-Serafini, P., Masaki, I., and Sodini, C., 2000. Single-chip imager system with programmable dynamic range. U.S Patent 6,977,685, Feb.Google Scholar
    2. Adams, A. 1983. The Print. Little, Brown, and Co.Google Scholar
    3. Akyüz, A., Reinhard, E., Fleming, R., Riecke, B., and Buelthoff, H. 2007. Do HDR displays support LDR content? A psychophysical evaluation. ACM Trans. Graph. (Proc. ACM Siggraph) 26, 3, (preceding paper in these proceedings). Google ScholarDigital Library
    4. Banterle, F., Ledda, P., Debattista, K., and Chalmers, A. 2006. Inverse tone mapping. In Proc. of GRAPHITE ’06, 349–356. Google ScholarDigital Library
    5. Bertalmio, M., Sapiro, G., Caselles, V., and Ballester, C. 2000. Image inpainting. In Proc. of ACM Siggraph 2000, 417–424. Google ScholarDigital Library
    6. Bornard, R., Lecan, E., Laborelli, L., and Chenot, J.-H. 2002. Missing data correction in still images and image sequences. In Proc of MULTIMEDIA ’02, 355–361. Google ScholarDigital Library
    7. BrightSide, 2005. DR37-P product description. http://brightsidetech.com/products/dr37p.php.Google Scholar
    8. Burt, P., and Adelson, E. 1983. The laplacian pyramid as a compact image code. IEEE Transactions on Communication 31, 4, 532–540.Google ScholarCross Ref
    9. Daly, S., and Feng, X. 2004. Decontouring: Prevention and removal of false contour artifacts. In Proc. of Human Vision and Electronic Imaging IX, SPIE, vol. 5292, 130–149.Google Scholar
    10. Daly, S. 1993. The visible differences predictor: An algorithm for the assessment of image fidelity. Digital Images and Human Vision, 179–206. Google ScholarDigital Library
    11. Hirani, A., and Totsuka, T. 1996. Combining frequency and spatial domain information for fast interactive image noise removal. In Proc. of ACM Siggraph ’96, 269–276. Google ScholarDigital Library
    12. Itu. 1990. ITU-R BT.709, basic parameter values for the HDTV standard for the studio and for international programme exchange. Standard Recommendation 709, International Telecommunication Union.Google Scholar
    13. Levin, A., Lischinski, D., and Weiss, Y. 2004. Colorization using optimization. ACM Trans. Graph. (Proc. ACM Siggraph) 23, 3, 689–694. Google ScholarDigital Library
    14. Li, Y., Sharan, L., and Adelson, E. 2005. Compressing and companding high dynamic range images with subband architectures. ACM Trans. Graph. (Proc. ACM Siggraph) 24, 3, 836–844. Google ScholarDigital Library
    15. Mantiuk, R., Krawczyk, G., Myszkowski, K., and Seidel, H.-P. 2004. Perception-motivated high dynamic range video encoding. ACM Trans. Graph. (Proc. of ACM Siggraph) 23, 3, 733–741. Google ScholarDigital Library
    16. Mantiuk, R., Myszkowski, K., and Seidel, H. 2004. Visible difference predicator for high dynamic range images. In Proc. IEEE International Conference on Systems, Man and Cybernetics, 2763–2769.Google Scholar
    17. Mantiuk, R., Efremov, A., Krawczyk, G., Myszkowski, K., and Seidel, H.-P. 2006. Backward compatible high dynamic range MPEG video compression. ACM Trans. Graph. (Proc. of ACM Siggraph) 25, 3, 713–723. Google ScholarDigital Library
    18. Meylan, L., Daly, S., and Süsstrunk, S. 2006. The reproduction of specular highlights on high dynamic range displays. In Proc. of the 14th Color Imaging Conference.Google Scholar
    19. Meylan, L., Daly, S., and Süsstrunk, S. 2007. Tone mapping for high dynamic range displays. In Proc. of Human Vision and Electronic Imaging XII, vol. 6492.Google Scholar
    20. Pattanaik, S. N., Ferwerda, J. A., Fairchild, M. D., and Greenberg, D. 1998. A multiscale model of adaptation and spatial vision for realistic image display. In Proc. of ACM SIGGRAPH ’98, 287–298. Google ScholarDigital Library
    21. Philips, 2006. Philips showcased latest LCD backlighting improvements at FPD 2006. http://preview.tinyurl.com/yhc4nb.Google Scholar
    22. Poynton, C. 2003. Digital Video and HDTV: Algorithms and Interfaces. Morgan Kaufmann. Google ScholarDigital Library
    23. Reinhard, E., Stark, M., Shirley, P., and Ferwerda, J. 2002. Photographic tone reproduction for digital images. ACM Trans. Graph. (Proc. of ACM Siggraph) 21, 3, 267–276. Google ScholarDigital Library
    24. Seetzen, H., Whitehead, L., and Ward, G. 2003. A high dynamic range display using low and high resolution modulators. In Society for Information Display Internatiational Symposium Digest of Technical Papers, 1450–1453.Google Scholar
    25. Seetzen, H., Heidrich, W., Stuerzlinger, W., Ward, G., Whitehead, L., Trentacoste, M., Ghosh, A., and Vorozcovs, A. 2004. High dynamic range display systems. ACM Trans. Graph. (Proc. ACM Siggraph) 23, 3, 760–768. Google ScholarDigital Library
    26. Seetzen, H., Li, H., Ye, L., Ward, G., Whitehead, L., and Heidrich, W. 2006. Guidelines for contrast, brightness, and amplitude resolution of displays. In Society for Information Display (SID) Digest, 1229–1233.Google Scholar
    27. Stokes, M., Anderson, M., and Motta, R. 1996. Standard default color space for the Internet. Tech. rep., World Wide Web Consortium.Google Scholar
    28. SUN, J., YUAN, L., JIA, J., and SHUM, H.-Y. 2005. Video enhancement using per-pixel virtual exposures. ACM Trans. Graph. (Proc. ACM Siggraph) 24, 3, 861–868. Google ScholarDigital Library
    29. Tomasi, C., and Manduchi, R. 1998. Bilateral filtering for gray and color images. In Proc. of ICCV ’98, 839. Google ScholarDigital Library
    30. van Nes, F., and Bouman, M. 1967. Spatial modulation transfer in the human eye. Journal of the Optical Society of America 57, 401–406.Google ScholarCross Ref
    31. Ward, G., and Simmons, M. 2005. JPEG-HDR: A backwards-compatible, high dynamic range extension to JPEG. In Proc. of Color Imaging Conference (CIC) ’05.Google Scholar
    32. Welsh, T., Ashikhmin, M., and Mueller, K. 2002. Transferring color to greyscale images. In Proc. of ACM Siggraph ’02, 277–280. Google ScholarDigital Library
    33. Yoshida, A., Mantiuk, R., Myszkowski, K., and Seidel, H.-P. 2006. Analysis of reproducing real-world appearance on displays of varying dynamic range. In Proc. of Eurographics 2006, 415–426.Google Scholar

ACM Digital Library Publication: