“KleinPAT: optimal mode conflation for time-domain precomputation of acoustic transfer” by Wang and James

  • ©Jui-Hsien Wang and Doug L. James

Conference:


Type(s):


Title:

    KleinPAT: optimal mode conflation for time-domain precomputation of acoustic transfer

Session/Category Title:   Sound Graphics


Presenter(s)/Author(s):



Abstract:


    We propose a new modal sound synthesis method that rapidly estimates all acoustic transfer fields of a linear modal vibration model, and greatly reduces preprocessing costs. Instead of performing a separate frequency-domain Helmholtz radiation analysis for each mode, our method partitions vibration modes into chords using optimal mode conflation, then performs a single time-domain wave simulation for each chord. We then perform transfer deconflation on each chord’s time-domain radiation field using a specialized QR solver, and thereby extract the frequency-domain transfer functions of each mode. The precomputed transfer functions are represented for fast far-field evaluation, e.g., using multipole expansions. In this paper, we propose to use a single scalar-valued Far-field Acoustic Transfer (FFAT) cube map. We describe a GPU-accelerated vector wavesolver that achieves high-throughput acoustic transfer computation at accuracy sufficient for sound synthesis. Our implementation, KleinPAT, can achieve hundred- to thousand-fold speedups compared to existing Helmholtz-based transfer solvers, thereby enabling large-scale generation of modal sound models for audio-visual applications.

References:


    1. T. Akenine-Möller. 2002. Fast 3D Triangle-box Overlap Testing. Journal of Graphics Tools 6, 1 (2002). Google ScholarDigital Library
    2. A. Allen and N. Raghuvanshi. 2015. Aerophones in Flatland: Interactive Wave Simulation of Wind Instruments. ACM Transactions on Graphics (Proceedings of SIGGRAPH 2015) 34, 4 (Aug. 2015). Google ScholarDigital Library
    3. M. Bebendorf. 2000. Approximation of boundary element matrices. Numerical Mathematics 86, 4 (01 Oct 2000), 565–589.Google Scholar
    4. Mario Bebendorf. 2008. Hierarchical Matrices – A Means to Efficiently Solve Elliptic Boundary Value Problems. In Lecture Notes in Computational Science and Engineering. Google ScholarDigital Library
    5. M. Bebendorf and R. Kriemann. 2005. Fast parallel solution of boundary integral equations and related problems. Computing and Visualization in Science 8, 3 (01 Dec 2005), 121–135.Google Scholar
    6. S. Bilbao. 2009. Numerical Sound Synthesis: Finite Difference Schemes and Simulation in Musical Acoustics. John Wiley and Sons. Google ScholarDigital Library
    7. S. Bilbao. 2011. Time domain simulation and sound synthesis for the snare drum. Journal of the Acoustical Society of America 131, 1 (2011).Google Scholar
    8. S. Bilbao. 2013. Modeling of Complex Geometries and Boundary Conditions in Finite Difference/Finite Volume Time Domain Room Acoustics Simulation. IEEE Transactions on Audio, Speech, and Language Processing 21, 7 (July 2013), 1524–1533. Google ScholarDigital Library
    9. S. Bilbao and C. J. Webb. 2013. Physical modeling of timpani drums in 3D on GPGPUs. Journal of the Audio Engineering Society 61, 10 (2013), 737–748.Google Scholar
    10. N. Bonneel, G. Drettakis, N. Tsingos, I. Viaud-Delmon, and D. James. 2008. Fast Modal Sounds with Scalable Frequency-Domain Synthesis. ACM Transactions on Graphics 27, 3 (Aug. 2008), 24:1–24:9. Google ScholarDigital Library
    11. D. Brunner, M. Junge, P. Rapp, M. Bebendorf, and L. Gaul. 2010. Comparison of the Fast Multipole Method with Hierarchical Matrices for the Helmholtz-BEM. Computer Modeling in Engineering & Sciences 58 (03 2010).Google Scholar
    12. J. N. Chadwick, S. S. An, and D. L. James. 2009. Harmonic Shells: A Practical Nonlinear Sound Model for Near-Rigid Thin Shells. ACM Transactions on Graphics (Aug. 2009). Google ScholarDigital Library
    13. J. N. Chadwick, C. Zheng, and D. L. James. 2012a. Faster Acceleration Noise for Multi-body Animations using Precomputed Soundbanks. ACM/Eurographics Symposium on Computer Animation (2012). Google ScholarDigital Library
    14. J. N. Chadwick, C. Zheng, and D. L. James. 2012b. Precomputed Acceleration Noise for Improved Rigid-Body Sound. ACM Transactions on Graphics (Proceedings of SIGGRAPH 2012) 31, 4 (Aug. 2012). Google ScholarDigital Library
    15. H. Cheng, W. Y. Crutchfield, Z. Gimbutas, L. F. Greengard, J F. Ethridge, J. Huang, V. Rokhlin, N. Yarvin, and J. Zhao. 2006. A wideband fast multipole method for the Helmholtz equation in three dimensions. J. Comput. Phys. 216, 1 (2006), 300–325. Google ScholarDigital Library
    16. D. Ciscowski, R. and C. A Brebbia. 1991. Boundary Element methods in acoustics. Computational Mechanics Publications and Elsevier Applied Science, Southampton. UK.Google Scholar
    17. P. R. Cook. 2002. Sound Production and Modeling. IEEE Computer Graphics & Applications 22, 4 (July/Aug. 2002), 23–27. Google ScholarDigital Library
    18. W. W. Gaver. 1993. Synthesizing auditory icons. In Proceedings of the INTERACT’93 and CHI’93 conference on Human factors in computing systems. ACM, 228–235. Google ScholarDigital Library
    19. Gene H. Golub and Charles F. Van Loan. 2013. Matrix Computations (4th ed.). The Johns Hopkins University Press.Google Scholar
    20. N. A. Gumerov and R. Duraiswami. 2005. Fast Multipole Methods for the Helmholtz Equation in Three Dimensions. Elsevier Science.Google Scholar
    21. R. W. Hamming. 1998. Digital filters. Courier Corporation.Google Scholar
    22. Doug James, Changxi Zheng, Timothy Langlois, and Ravish Mehra. 2016. Physically Based Sound for Computer Animation and Virtual Environments. In ACM SIGGRAPH 2016 Courses. ACM, 22. Google ScholarDigital Library
    23. D. L. James, J. Barbic, and D. K. Pai. 2006. Precomputed Acoustic Transfer: Output-sensitive, accurate sound generation for geometrically complex vibration sources. ACM Transactions on Graphics 25, 3 (July 2006), 987–995. Google ScholarDigital Library
    24. S. M. Kay. 1988. Modern Spectral Estimation: Theory and Application. Prentice Hall.Google Scholar
    25. D. Komatitsch, G. Erlebacher, D. Göddeke, and D. Michéa. 2010. High-order finite-element seismic wave propagation modeling with MPI on a large GPU cluster. Journal of computational physics 229, 20 (2010), 7692–7714. Google ScholarDigital Library
    26. T. R. Langlois, S. S. An, K. K. Jin, and D. L. James. 2014. Eigenmode Compression for Modal Sound Models. ACM Transactions on Graphics (TOG) 33, 4, Article 40 (July 2014), 9 pages. Google ScholarDigital Library
    27. T. R. Langlois, C. Zheng, and D. L. James. 2016. Toward Animating Water with Complex Acoustic Bubbles. ACM Transactions on Graphics (TOG) 35, 4, Article 95 (July 2016), 13 pages. Google ScholarDigital Library
    28. D. Li, Y. Fei, and C. Zheng. 2015. Interactive Acoustic Transfer Approximation for Modal Sound. ACM Transactions on Graphics (TOG) 35, 1 (2015). Google ScholarDigital Library
    29. Q.-H. Liu and J. Tao. 1997. The perfectly matched layer for acoustic waves in absorptive media. The Journal of the Acoustical Society of America 102, 4 (1997), 2072–2082.Google ScholarCross Ref
    30. Y. J. Liu. 2009. Fast Multipole Boundary Element Method: Theory and Applications in Engineering. Cambridge University Press, Cambridge.Google Scholar
    31. P. J. Looges and S. Olariu. 1992. Optimal greedy algorithms for indifference graphs. In Proceedings IEEE Southeastcon ’92. 144–149 vol. 1.Google Scholar
    32. R. Mehra, N. Raghuvanshi, L. Savioja, M. C. Lin, and D. Manocha. 2012. An efficient GPU-based time domain solver for the acoustic wave equation. Applied Acoustics 73, 2 (2012), 83 — 94.Google ScholarCross Ref
    33. A. Meshram, R. Mehra, H. Yang, E. Dunn, J.-M. Frahm, and D. Manochak. 2014. P-hrtf: Efficient personalized hrtf computation for high-fidelity spatial sound. Mixed and Augmented Reality (ISMAR), 2014 IEEE International Symposium on (2014).Google ScholarCross Ref
    34. P. Micikevicius. 2009. 3D Finite Difference Computation on GPUs Using CUDA. In Proceedings of 2Nd Workshop on General Purpose Processing on Graphics Processing Units (GPGPU-2). ACM, New York, NY, USA, 79–84. Google ScholarDigital Library
    35. J. D. Morrison and J.-M. Adrien. 1993. Mosaic: A framework for modal synthesis. Computer Music Journal 17, 1 (1993), 45–56.Google ScholarCross Ref
    36. J. F. O’Brien, C. Shen, and C. M. Gatchalian. 2002. Synthesizing sounds from rigid-body simulations. In The ACM SIGGRAPH 2002 Symposium on Computer Animation. ACM Press, 175–181. Google ScholarDigital Library
    37. D. K. Pai, K. van den Doel, D. L. James, J. Lang, J. E. Lloyd, J. L. Richmond, and S. H. Yau. 2001. Scanning physical interaction behavior of 3D objects. In Proceedings of the 28th annual conference on Computer graphics and interactive techniques. ACM, 87–96. Google ScholarDigital Library
    38. S. Prepelita, M. Geronazzo, F. Avanzini, and L. Savioja. 2016. Influence of voxelization on finite difference time domain simulations of head-related transfer functions. The Journal of the Acoustical Society of America 139, 5 (2016), 2489–2504.Google ScholarCross Ref
    39. Z. Ren, H. Yeh, and M. C. Lin. 2013. Example-guided physically based modal sound synthesis. ACM Transactions on Graphics (TOG) 32, 1 (2013), 1. Google ScholarDigital Library
    40. Y. Saad and M. H. Schultz. 1986. GMRES: A Generalized Minimal Residual Algorithm for Solving Nonsymmetric Linear Systems. SIAM J. Sci. Statist. Comput. 7, 3 (July 1986), 856–869. Google ScholarDigital Library
    41. X. Serra and J. Smith. 1990. Spectral modeling synthesis: A sound analysis/synthesis system based on a deterministic plus stochastic decomposition. Computer Music Journal 14, 4 (1990), 12–24.Google ScholarCross Ref
    42. A. A. Shabana. 2012. Theory of Vibration: An Introduction. Springer Science & Business Media.Google Scholar
    43. A. A. Shabana. 2013. Dynamics of multibody systems. Cambridge university press.Google Scholar
    44. W. Śmigaj, T. Betcke, S. Arridge, J. Phillips, and M. Schweiger. 2015. Solving Boundary Integral Problems with BEM++. ACM Trans. Math. Software 41, 2, Article 6 (Feb. 2015), 40 pages. Google ScholarDigital Library
    45. A. Taflove and S. C. Hagness. 2005. Computational Electrodynamics: The Finite-Difference Time-Domain Method. Artech House.Google Scholar
    46. T. Takala and J. Hahn. 1992. Sound rendering. In ACM Transactions on Graphics (Proceedings of SIGGRAPH 1992). 211–220. Google ScholarDigital Library
    47. K. van den Doel, P. G. Kry, and D. K. Pai. 2001. FoleyAutomatic: Physically-based Sound Effects for Interactive Simulation and Animation. In Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques (ACM Transactions on Graphics (Proceedings of SIGGRAPH 2001)). ACM, New York, NY, USA, 537–544. Google ScholarDigital Library
    48. K. van den Doel and D. K. Pai. 1996. Synthesis of shape dependent sounds with physical modeling. International Conference on Auditory Display 28 (1996).Google Scholar
    49. O. von Estorff. 2000. Boundary Elements in Acoustics: Advances and Applications. WIT Press, Southhampton, UK.Google Scholar
    50. J.-H. Wang, A. Qu, T. R. Langlois, and D. L. James. 2018. Toward Wave-based Sound Synthesis for Computer Animation. ACM Transactions on Graphics (TOG) 37, 4, Article 109 (July 2018), 16 pages. Google ScholarDigital Library
    51. Wikipedia. 2019. All-interval twelve-tone row. https://en.wikipedia.org/wiki/All-interval_twelve-tone_rowGoogle Scholar
    52. T. W Wu. 2000. Boundary Element Acoustics: Fundamentals and Computer Codes. WIT Press, Southhampton, UK.Google Scholar
    53. C. Zheng and D. L. James. 2009. Harmonic Fluids. ACM Transactions on Graphics (Proceedings of SIGGRAPH 2009) 28, 3 (Aug. 2009). Google ScholarDigital Library
    54. C. Zheng and D. L. James. 2010. Rigid-Body Fracture Sound with Precomputed Soundbanks. ACM Transactions on Graphics (Proceedings of SIGGRAPH 2010) 29, 3 (July 2010). Google ScholarDigital Library
    55. C. Zheng and D. L. James. 2011. Toward High-Quality Modal Contact Sound. ACM Transactions on Graphics (Proceedings of SIGGRAPH 2011) 30, 4 (Aug. 2011). Google ScholarDigital Library
    56. E. Zwicker and H. Fastl. 2013. Psychoacoustics: Facts and models. Vol. 22. Springer Science & Business Media.Google Scholar


ACM Digital Library Publication:



Overview Page: