“Interactive Sound Propagation Using Compact Acoustic Transfer Operators” by Antani, Chandak, Savioja and Manocha

  • ©Lakulish Antani, Anish Chandak, Lauri Savioja, and Dinesh Manocha




    Interactive Sound Propagation Using Compact Acoustic Transfer Operators



    We present an interactive sound propagation algorithm that can compute high orders of specular and diffuse reflections as well as edge diffractions in response to moving sound sources and a moving listener. Our formulation is based on a precomputed acoustic transfer operator, which we compactly represent using the Karhunen-Loeve transform. At runtime, we use a two-pass approach that combines acoustic radiance transfer with interactive ray tracing to compute early reflections as well as higher-order reflections and late reverberation. The overall approach allows accuracy to be traded off for improved performance at runtime, and has a low memory overhead. We demonstrate the performance of our algorithm on different scenarios, including an integration of our algorithm with Valve’s Source game engine.


    Alarcao, D., Santos, D., and Coelho, J. L. B. 2009. An auralization system for real time room acoustics simulation. In Proceedings of the Tecniacustica Conference.Google Scholar
    Allen, J. B. and Berkley, D. A. 1979. Image method for efficiently simulating small-room acoustics. J. Acoust. Soc. Amer. 65, 4, 943–950.Google ScholarCross Ref
    Antani, L., Chandak, A., Taylor, M., and Manocha, D. 2011. Direct-to-Indirect acoustic radiance transfer. IEEE Trans. Vis. Comput. Graph. (To appear). Google ScholarDigital Library
    Bertram, M., Deines, E., Mohring, J., Jegorovs, J., and Hagen, H. 2005. Phonon tracing for auralization and visualization of sound. In Proceedings of the IEEE Visualization Conference. 151–158.Google Scholar
    Bonneel, N., Drettakis, G., Tsingos, N., Viaud-Delmon, I., and James, D. L. 2008. Fast modal sounds with scalable frequency-domain synthesis. ACM Trans. Graph. 27, 3. Google ScholarDigital Library
    Botteldooren, D. 1995. Finite difference time domain simulation of low frequency room acoustic problems. J. Acoust. Soc. Amer. 98, 8, 3302–3308.Google ScholarCross Ref
    Chadwick, J., An, S., and James, D. L. 2009. Harmonic shells: A practical nonlinear sound model for near-rigid thin shells. ACM Trans. Graph. 28, 5. Google ScholarDigital Library
    Chandak, A., Antani, L., Taylor, M., and Manocha, D. 2009. Fastv: From-Point visibility culling on complex models. Comput. Graph. Forum 28, 1237–1246.Google ScholarDigital Library
    Ciskowski, R. and Brebbia, C. 1991. Boundary Element Methods in Acoustics. Computational Mechanics Publications and Elsevier Applied Science.Google Scholar
    Foale, C. and Vamplew, P. 2007. Portal-Based sound propagation for first-person computer games. In Proceedings of the Australasian Conference on Interactive Entertainment. 9:1–9:8. Google ScholarDigital Library
    Funkhouser, T., Carlbom, I., Elko, G., Pingali, G., Sondhi, M., and West, J. 1998. A beam tracing approach to acoustic modeling for interactive virtual environments. In Proceedings of the SIGGRAPH Conference. 21–32. Google ScholarDigital Library
    Goral, C. M., Torrance, K. E., Greenberg, D. P., and Battaile, B. 1984. Modeling the interaction of light between diffuse surfaces. Comput. Graph. 18, 3, 213–222. Google ScholarDigital Library
    Hašan, M., Pellacini, F., and Bala, K. 2006. Direct-to-Indirect transfer for cinematic relighting. ACM Trans. Graph. 25, 3, 1089–1097. Google ScholarDigital Library
    Ihlenburg, F. 1998. Finite Element Analysis of Acoustic Scattering. Springer.Google Scholar
    James, D. L., Barbič, J., and Pai, D. K. 2006. Precomputed acoustic transfer: Output-Sensitive, accurate sound generation for geometrically complex vibration sources. ACM Trans. Graph. 25, 3, 987–995. Google ScholarDigital Library
    Kajiya, J. T. 1986. The rendering equation. Comput. Graph. 20, 4, 143–150. Google ScholarDigital Library
    Kapralos, B., Jenkin, M., and Milios, E. 2004. Sonel mapping: Acoustic modeling utilizing an acoustic version of photon mapping. In Proceedings of the IEEE International Workshop on Haptics Audio Visual Environments and their Applications.Google Scholar
    Kristensen, A. W., Akenine-Möller, T., and Jensen, H. W. 2005. Precomputed local radiance transfer for real-time lighting design. ACM Trans. Graph. 24, 3, 1208–1215. Google ScholarDigital Library
    Kuttruff, H. 1991. Room Acoustics. Elsevier Science Publishing Ltd.Google Scholar
    Kuttruff, H. 1995. A simple iteration scheme for the computation of decay constants in enclosures with diffusely reflecting boundaries. J. Acoust. Soc. Amer. 98, 1, 288–293.Google ScholarCross Ref
    Kuttruff, H. K. 1993. Auralization of impulse responses modeled on the basis of ray-tracing results. J. Audio Engin. Soc. 41, 11, 876–880.Google Scholar
    Laine, S., Siltanen, S., Lokki, T., and Savioja, L. 2009. Accelerated beam tracing algorithm. Appl. Acoust. 70, 1, 172–181.Google ScholarCross Ref
    Lehtinen, J., Zwicker, M., Turquin, E., Kontkanen, J., Durand, F., Sillion, F. X., and Aila, T. 2008. A meshless hierarchical representation for light transport. ACM Trans. Graph. 27, 3, 1–9. Google ScholarDigital Library
    Lentz, T., Schroeder, D., Vorlander, M., and Assenmacher, I. 2007. Virtual reality system with integrated sound field simulation and reproduction. EURASIP J. Appl. Signal Process. 2007, 1. Google ScholarDigital Library
    Loève, M. 1978. Probability Theory Vol. II. Springer.Google Scholar
    Moeck, T., Bonneel, N., Tsingos, N., Drettakis, G., Viaud-Delmon, I., and Aloza, D. 2007. Progressive perceptual audio rendering of complex scenes. In Proceedings of the ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games. Google ScholarDigital Library
    Nosal, E.-M., Hodgson, M., and Ashdown, I. 2004. Improved algorithms and methods for room sound-field prediction by acoustical radiosity in arbitrary polyhedral rooms. J. Acoust. Soc. Amer. 116, 2, 970–980.Google ScholarCross Ref
    Raghuvanshi, N. and Lin, M. C. 2006. Interactive sound synthesis for large scale environments. In Proceedings of the Symposium on Interactive 3D Graphics and Games. Google ScholarDigital Library
    Raghuvanshi, N., Narain, R., and Lin, M. C. 2009. Efficient and accurate sound propagation using adaptive rectangular decomposition. IEEE Trans. Vis. Comput. Graph. 15, 789–801. Google ScholarDigital Library
    Raghuvanshi, N., Snyder, J., Mehra, R., Lin, M., and Govindaraju, N. 2010. Precomputed wave simulation for real-time sound propagation of dynamic sources in complex scenes. ACM Trans. Graph. 29, 4, 68:1–68:11. Google ScholarDigital Library
    Savioja, L., Huopaniemi, J., Lokki, T., and Väänänen, R. 1999. Creating interactive virtual acoustic environments. J. Audio Engin. Soc. 47, 9, 675–705.Google Scholar
    Savioja, L., Rinne, T., and Takala, T. 1994. Simulation of room acoustics with a 3-D finite difference mesh. In Proceedings of the International Computer Music Conference. 463–466.Google Scholar
    Siltanen, S., Lokki, T., Kiminki, S., and Savioja, L. 2007. The room acoustic rendering equation. J. Acoust. Soc. Amer. 122, 3, 1624–1635.Google ScholarCross Ref
    Siltanen, S., Lokki, T., and Savioja, L. 2009. Frequency domain acoustic radiance transfer for real-time auralization. In Proceedings of Acta Acustica united with Acustica 95, 106–117.Google Scholar
    Sloan, P.-P., Kautz, J., and Snyder, J. 2002. Precomputed radiance transfer for real-time rendering in dynamic, low-frequency lighting environments. ACM Trans. Graph. 21, 3, 527–536. Google ScholarDigital Library
    Stavrakis, E., Tsingos, N., and Calamia, P. 2008. Topological sound propagation with reverberation graphs. In Proceedings of Acta Acustica united with Acustica.Google Scholar
    Stephenson, U. M. 2010. An analytically derived sound particle diffraction model. In Proceedings of Acta Acustica united with Acustica 96, 1051–1068.Google ScholarCross Ref
    Stephenson, U. M. and Svensson, U. P. 2007. An improved energetic approach to diffraction based on the unvertainty principle. In Proceedings of the 19th International Congress on Acoustics (ICA).Google Scholar
    Summers, J. E., Torres, R. R., and Shimizu, Y. 2004. Statistical-acoustics models of energy decay in systems of coupled rooms and their relation to geometrical acoustics. J. Acoust. Soc. Amer. 116, 2, 958–969.Google ScholarCross Ref
    Svensson, U. P., Fred, R. I., and Vanderkooy, J. 1999. An analytic secondary source model of edge diffraction impulse responses. J. Acoust. Soc. Amer. 106, 2331–2344.Google ScholarCross Ref
    Taylor, M. T., Chandak, A., Antani, L., and Manocha, D. 2009. Resound: interactive sound rendering for dynamic virtual environments. In Proceedings of the ACM Multimedia Conference. 271–280. Google ScholarDigital Library
    Tsingos, N. 2007. Perceptually-Based auralization. In Proceedings of the International Congress on Acoustics.Google Scholar
    Tsingos, N. 2009. Precomputing geometry-based reverberation effects for games. In Proceedings of the Audio Engineering Society Conference: Audio for Games.Google Scholar
    Tsingos, N., Funkhouser, T., Ngan, A., and Carlbom, I. 2001. Modeling acoustics in virtual environments using the uniform theory of diffraction. In Proceedings of the SIGGRAPH Conference. 545–552. Google ScholarDigital Library
    Tsingos, N., Gallo, E., and Drettakis, G. 2004. Perceptual audio rendering of complex virtual environments. ACM Trans. Graph. 23, 3. Google ScholarDigital Library
    Tsingos, N. and Gascuel, J.-D. 1997. A general model for the simulation of room acoustics based on hierachical radiosity. In Proceedings of the ACM SIGGRAPH 97. Google ScholarDigital Library
    Wallace, J. R., Cohen, M. F., and Greenberg, D. P. 1987. A two-pass solution to the rendering equation: A synthesis of ray tracing and radiosity methods. Comput. Graph. 21, 4, 311–320. Google ScholarDigital Library
    Wang, Ye; Vilermo, M. 2003. Modified discrete cosine transform: Its implications for audio coding and error concealment. J. Audio Engin. Soc 51, 1/2, 52–61.Google Scholar

ACM Digital Library Publication: