“Interactive Sound Propagation and Rendering for Large Multi-Source Scenes”

  • ©Carl Schissler and Dinesh Manocha

Conference:


Type:


Title:

    Interactive Sound Propagation and Rendering for Large Multi-Source Scenes

Session/Category Title: Sound & Elastics


Presenter(s)/Author(s):


Moderator(s):



Abstract:


    We present an approach to generate plausible acoustic effects at interactive rates in large dynamic environments containing many sound sources. Our formulation combines listener-based backward ray tracing with sound source clustering and hybrid audio rendering to handle complex scenes. We present a new algorithm for dynamic late reverberation that performs high-order ray tracing from the listener against spherical sound sources. We achieve sublinear scaling with the number of sources by clustering distant sound sources and taking relative visibility into account. We also describe a hybrid convolution-based audio rendering technique that can process hundreds of thousands of sound paths at interactive rates. We demonstrate the performance on many indoor and outdoor scenes with up to 200 sound sources. In practice, our algorithm can compute more than 50 reflection orders at interactive rates on a multicore PC, and we observe a 5x speedup over prior geometric sound propagation algorithms.

References:


    1. Lakulish Antani, Anish Chandak, Lauri Savioja, and Dinesh Manocha. 2012. Interactive sound propagation using compact acoustic transfer operators. ACM Transactions on Graphics 31, 1, 7:1–7:12. Google ScholarDigital Library
    2. Lakulish Antani and Dinesh Manocha. 2013. Aural proxies and directionally varying reverberation for interactive sound propagation in virtual environments. IEEE Transactions on Visualization and Computer Graphics 19, 4, 567–575. Google ScholarDigital Library
    3. Eric Battenberg and Rimas Avizienis. 2011. Implementing real-time partitioned convolution algorithms on conventional operating systems. In Proceedings of the 14th International Conference on Digital Audio Effects.Google Scholar
    4. Ingolf Bork. 2000. A comparison of room simulation software—the 2nd round robin on room acoustical computer simulation. Acta Acustica United with Acustica 86, 6, 943–956.Google Scholar
    5. K. Case. 1993. Structural Acoustics: A General Form of Reciprocity Principles in Acoustics. Technical Report. JSR-92-193. MITRE Corporation.Google ScholarCross Ref
    6. A. Chandak, L. Antani, M. Taylor, and D. Manocha. 2009. FastV: From-point visibility culling on complex models. Computer Graphics Forum 28, 3, 1237–1247. Google ScholarDigital Library
    7. Claus Christensen and Georgios Koutsouris. 2013. Calculation principles. In User Manual (2nd ed.). Odeon A/S, Kongens Lyngby, Denmark, 6-72–6–86.Google Scholar
    8. C. Christensen, G. Nielsen, and J. Rindel. 2008. Danish Acoustical Society Round Robin on Room Acoustic Computer Modeling. Odeon A/S, Lyngby, Denmark.Google Scholar
    9. Claus Lynge Christensen and Jens Holger Rindel. 2005. A New Scattering Method That Combines Roughness and Diffraction Effects. Retrieved June 30, 2016, from http://www.odeon.dk/pdf/CLC%20fa2005.pdf.Google ScholarCross Ref
    10. J. J. Embrechts. 2000. Broad spectrum diffusion model for room acoustics ray-tracing algorithms. Journal of the Acoustical Society of America 107, 4, 2068–2081. DOI:http://dx.doi.org/10.1121/1.428489 Google ScholarCross Ref
    11. H. Fouad, J. Hahn, and J. Ballas. 1997. Perceptually based scheduling algorithms for real-time synthesis of complex sonic environments. In Proceedings of the International Conference on Auditory Display.Google Scholar
    12. Thomas Funkhouser, Ingrid Carlbom, Gary Elko, Gopal Pingali, Mohan Sondhi, and Jim West. 1998. A beam tracing approach to acoustic modeling for interactive virtual environments. In Proceedings of the ACM SIGGRAPHConference. 21–32. Google ScholarDigital Library
    13. Emmanuel Gallo Nicolas Tsingos 2004. Efficient 3D audio processing on the GPU. In Proceedings of the ACM Workshop on General Purpose Computing on Graphics Processors.Google Scholar
    14. J. M. Geringer, R. B. MacLeod, and J. Sasanfar. 2012. High school string players perception of violin, trumpet, and voice intonation. String Research Journal 3, 81–96.Google ScholarCross Ref
    15. David Griesinger. 2009. The importance of the direct to reverberant ratio in the perception of distance, localization, clarity, and envelopment. In Proceedings of the Audio Engineering Society Convention 126. http://www.aes.org/e-lib/browse.cfm?elib=14920.Google Scholar
    16. Jens Herder. 1999. Optimization of sound spatialization resource management through clustering. Journal of Three Dimensional Images 13, 59–65.Google Scholar
    17. ISO. 2012. ISO 3382, Acoustics—Measurement of Room Acoustic Parameters. ISO, Geneva, Switzerland.Google Scholar
    18. Doug L. James, Jernej Barbic, and Dinesh K. Pai. 2006. Precomputed acoustic transfer: Output-sensitive, accurate sound generation for geometrically complex vibration sources. In Proceedings of the ACM SIGGRAPH Conference. 987–995. DOI:http://dx.doi.org/10.1145/1179352.1141983 Google ScholarDigital Library
    19. A. Krokstad, S. Strom, and S. Sorsdal. 1968. Calculating the acoustical room response by the use of a ray tracing technique. Journal of Sound and Vibration 8, 1, 118–125. http://dx.doi.org/10.1016/0022-460X(68)90198-3. Google ScholarCross Ref
    20. Barry D. Kulp. 1988. Digital equalization using Fourier transform techniques. In Proceedings of Audio Engineering Society Convention 85.Google Scholar
    21. H. Kuttruff. 2007. Acoustics: An Introduction. Taylor & Francis, New York, NY.Google Scholar
    22. Tobias Lentz, Dirk Schröder, Michael Vorländer, and Ingo Assenmacher. 2007. Virtual reality system with integrated sound field simulation and reproduction. EURASIP Journal on Advances in Signal Processing 2007, 1, 187. Google ScholarDigital Library
    23. R. Mehra, N. Raghuvanshi, L. Antani, A. Chandak, S. Curtis, and D. Manocha. 2013. Wave-based sound propagation in large open scenes using an equivalent source formulation. ACM Transactions on Graphics 32, 2, 19:1–19:13. Google ScholarDigital Library
    24. Thomas Moeck, Nicolas Bonneel, Nicolas Tsingos, George Drettakis, Isabelle Viaud-Delmon, and David Alloza. 2007. Progressive perceptual audio rendering of complex scenes. In Proceedings of the Symposium on Interactive 3D Graphics and Games. ACM, New York, NY, 189–196. Google ScholarDigital Library
    25. Christian Müller-Tomfelde. 2001. Time-varying filter in non-uniform block convolution. In Proceedings of the COST G-6 Conference on Digital Audio Effects.Google Scholar
    26. Sönke Pelzer and Michael Vorländer. 2010. Frequency-and time-dependent geometry for real-time auralizations. In Proceedings of the 20th International Congress on Acoustics (ICA’10).Google Scholar
    27. Ville Pulkki. 1997. Virtual sound source positioning using vector base amplitude panning. Journal of the Audio Engineering Society 45, 6, 456–466.Google Scholar
    28. N. Raghuvanshi, J. Snyder, R. Mehra, M. Lin, and N. Govindaraju. 2010. Precomputed wave simulation for real-time sound propagation of dynamic sources in complex scenes. ACM Transactions on Graphics 29, 4, 68:1–68:11. Google ScholarDigital Library
    29. Jens Holger Rindel and Claus Lynge Christensen. 2003. Room acoustic simulation and auralization—how close can we get to the real room? In Proceedings of the 8th Western Pacific Acoustics Conference.Google Scholar
    30. A. Rungta, C. Schissler, R. Mehra, C. Malloy, M. Lin, and D. Manocha. 2016. SynCoPation: Interactive synthesis-coupled sound propagation. IEEE Transactions on Visualization and Computer Graphics 22, 4, 1346–1355. Google ScholarDigital Library
    31. L. Savioja, J. Huopaniemi, T. Lokki, and R. Väänänen. 1999. Creating interactive virtual acoustic environments. Journal of the Audio Engineering Society 47, 9, 675–705.Google Scholar
    32. L. Savioja, T. Lokki, and J. Huopaniemi. 2002. Auralization applying the parametric room acoustic modeling technique—the DIVA auralization system. In Proceedings of the 8th International Conference on Auditory Display. 219–224. http://www.icad.org/biblio/export/bib/326.Google Scholar
    33. Carl Schissler, Ravish Mehra, and Dinesh Manocha. 2014. High-order diffraction and diffuse reflections for interactive sound propagation in large environments. ACM Transactions on Graphics 33, 4, 39. Google ScholarDigital Library
    34. Carl Schissler, Aaron Nicholls, and Ravish Mehra. 2016. Efficient HRTF-based spatial audio for area and volumetric sources. IEEE Transactions on Visualization and Computer Graphics 22, 4, 1356–1366. Google ScholarDigital Library
    35. Dirk Schröder. 2011. Physically Based Real-Time Auralization of Interactive Virtual Environments, Vol. 11. Logos Verlag Berlin GmbH, Berlin, Germany.Google Scholar
    36. Manfred R. Schroeder. 1962. Natural sounding artificial reverberation. Journal of the Audio Engineering Society 10, 3, 219–223.Google Scholar
    37. Samuel Siltanen, Tapio Lokki, Sami Kiminki, and Lauri Savioja. 2007. The room acoustic rendering equation. Journal of the Acoustical Society of America 122, 3, 1624–1635. Google ScholarCross Ref
    38. Samuel Siltanen, Tapio Lokki, Lauri Savioja, and Claus Lynge Christensen. 2008. Geometry reduction in room acoustics modeling. Acta Acustica United with Acustica 94, 3, 410–418. Google ScholarCross Ref
    39. M. Taylor, A. Chandak, L. Antani, and D. Manocha. 2009. RESound: Interactive sound rendering for dynamic virtual environments. In Proceedings of the 17th ACM International Conference on Multimedia (MM’09). ACM, New York, NY, 271–280. DOI:http://dx.doi.org/10.1145/1631272.1631311 Google ScholarDigital Library
    40. Micah Taylor, Anish Chandak, Qi Mo, Christian Lauterbach, Carl Schissler, and Dinesh Manocha. 2012. Guided multiview ray tracing for fast auralization. IEEE Transactions on Visualization and Computer Graphics 18, 1797–1810. Google ScholarDigital Library
    41. Nicolas Tsingos. 2001. A versatile software architecture for virtual audio simulations. In Proceedings of the International Conference on Auditory Display (ICAD’01).Google Scholar
    42. Nicolas Tsingos. 2009. Pre-computing geometry-based reverberation effects for games. In Proceedings of the AES Conference on Audio for Games.Google Scholar
    43. Nicolas Tsingos, Carsten Dachsbacher, Sylvain Lefebvre, and Matteo Dellepiane. 2007. Instant sound scattering. In Proceedings of the Eurographics Symposium on Rendering. 111–120. Google ScholarDigital Library
    44. N. Tsingos, T. Funkhouser, A. Ngan, and I. Carlbom. 2001. Modeling acoustics in virtual environments using the uniform theory of diffraction. In Proceedings of the ACM SIGGRAPH Conference. 545–552. Google ScholarDigital Library
    45. Nicolas Tsingos, Emmanuel Gallo, and George Drettakis. 2004. Perceptual audio rendering of complex virtual environments. ACM Transactions on Graphics 23, 3, 249–258. DOI:http://dx.doi.org/10.1145/1015706.1015710 Google ScholarDigital Library
    46. Vesa Valimaki, Julian D. Parker, Lauri Savioja, Julius O. Smith, and Jonathan S. Abel. 2012. Fifty years of artificial reverberation. IEEE Transactions on Audio, Speech, and Language Processing 20, 5, 1421–1448. Google ScholarDigital Library
    47. M. Vorländer. 1989. Simulation of the transient and steady-state sound propagation in rooms using a new combined ray-tracing/image-source algorithm. Journal of the Acoustical Society of America 86, 1, 172–178. Google ScholarCross Ref
    48. M. Wand and W. Straßer. 2004. Multi-resolution sound rendering. In Proceedings of the Symposium on Point-Based Graphics (SPBG’04). 3–11. Google ScholarDigital Library
    49. L. M. Wang, J. Rathsam, and S. R. Ryherd. 2004. Interactions of model detail level and scattering coefficients in room acoustic computer simulation. In Proceedings of the International Symposium on Room Acoustics: Design and Science.Google Scholar
    50. Frank Wefers and Michael Vorländer. 2014. Efficient time-varying FIR filtering using crossfading implemented in the DFT domain. In Forum Acousticum. European Acoustics Association.Google Scholar
    51. Elizabeth M. Wenzel, Joel D. Miller, and Jonathan S. Abel. 2000. A software-based system for interactive spatial sound synthesis. In Proceedings of the 6th International Conference for Auditory Display (ICAD’00). 151–156.Google Scholar
    52. H. Yeh, R. Mehra, Z. Ren, L. Antani, D. Manocha, and M. Lin. 2013. Wave-ray coupling for interactive sound propagation in large complex scenes. ACM Transactions on Graphics 32, 6, 165:1–165:11. Google ScholarDigital Library
    53. S. Yoon, E. Gobbetti, D. Kasik, and D. Manocha. 2008. Real-Time Massive Model Rendering. Morgan & Claypool.Google Scholar


ACM Digital Library Publication:



Overview Page: