“Frame fields: anisotropic and non-orthogonal cross fields” by Panozzo, Puppo, Tarini and Sorkine-Hornung

  • ©

Conference:


Type(s):


Title:

    Frame fields: anisotropic and non-orthogonal cross fields

Session/Category Title:   Fields on Surfaces


Presenter(s)/Author(s):


Moderator(s):



Abstract:


    We introduce frame fields, which are a non-orthogonal and non-unit-length generalization of cross fields. Frame fields represent smoothly varying linear transformations on tangent spaces of a surface. We propose an algorithm to create discrete, dense frame fields that satisfy a sparse set of constraints. By computing a surface deformation that warps a frame field into a cross field, we generalize existing quadrangulation algorithms to generate anisotropic and non-uniform quad meshes whose elements shapes match the frame field. With this, our framework enables users to control not only the alignment but also the density and anisotropy of the elements’ distribution, resulting in high-quality adaptive quad meshing.

References:


    1. Alexa, M., Cohen-Or, D., and Levin, D. 2000. As-rigid-as-possible shape interpolation. In derACM SIGGRAPH, 157–164. Google ScholarDigital Library
    2. Alliez, P., Cohen-Steiner, D., Devillers, O., Lévy, B., and Desbrun, M. 2003. Anisotropic polygonal remeshing. ACM Trans. Graph. 22, 3, 485–493. Google ScholarDigital Library
    3. Bommes, D., Zimmer, H., and Kobbelt, L. 2009. Mixed-integer quadrangulation. ACM Trans. Graph. 28, 3, 77:1–77:10. Google ScholarDigital Library
    4. Bommes, D., Lévy, B., Pietroni, N., Puppo, E., Silva, C., Tarini, M., and Zorin, D. 2013. Quad-mesh generation and processing: A survey. Comput. Graph. Forum 32, 51–76.Google ScholarDigital Library
    5. Bommes, D., Campen, M., Ebke, H.-C., Alliez, P., and Kobbelt, L. 2013. Integer-grid maps for reliable quad meshing. ACM Trans. Graph. 32, 4, 98:1–98:12. Google ScholarDigital Library
    6. Burley, B., and Lacewell, D. 2008. Ptex: Per-face texture mapping for production rendering. In Proc. of Eurographics Conference on Rendering, 1155–1164. Google ScholarDigital Library
    7. Crane, K., Desbrun, M., and Schröder, P. 2010. Trivial connections on discrete surfaces. Comput. Graph. Forum 29, 5, 1525–1533.Google ScholarCross Ref
    8. DeRose, T., Kass, M., and Truong, T. 1998. Subdivision surfaces in character animation. In ACM SIGGRAPH, 85–94. Google ScholarDigital Library
    9. Ebke, H.-C., Bommes, D., Campen, M., and Kobbelt, L. 2013. Qex: Robust quad mesh extraction. ACM Trans. Graph. 32, 6, 168:1–168:10. Google ScholarDigital Library
    10. Fisher, M., Schröder, P., Desbrun, M., and Hoppe, H. 2007. Design of tangent vector fields. ACM Trans. Graph. 26, 3, 56:1–56:9. Google ScholarDigital Library
    11. Hertzmann, A., and Zorin, D. 2000. Illustrating smooth surfaces. In Proc. ACM SIGGRAPH, 517–526. Google ScholarDigital Library
    12. Huang, J., Zhang, M., Ma, J., Liu, X., Kobbelt, L., and Bao, H. 2008. Spectral quadrangulation with orientation and alignment control. ACM Trans. Graph. 27, 5, 147:1–147:9. Google ScholarDigital Library
    13. Jacobson, A., Baran, I., Popović, J., and Sorkine, O. 2011. Bounded biharmonic weights for real-time deformation. ACM Trans. Graph. 30, 4, 78:1–78:8. Google ScholarDigital Library
    14. Kälberer, F., Nieser, M., and Polthier, K. 2007. Quad-Cover — surface parameterization using branched coverings. Comput. Graph. Forum 26, 3, 375–384.Google ScholarCross Ref
    15. Knöppel, F., Crane, K., Pinkall, U., and Schröder, P. 2013. Globally optimal direction fields. ACM Trans. Graph. 32, 4, 59:1–59:10. Google ScholarDigital Library
    16. Kovacs, D., Myles, A., and Zorin, D. 2010. Anisotropic quadrangulation. In Proc. ACM Symposium on Solid and Physical Modeling, 137–146. Google ScholarDigital Library
    17. Lai, Y.-K., Jin, M., Xie, X., He, Y., Palacios, J., Zhang, E., Hu, S.-M., and Gu, X. 2010. Metric-driven RoSy field design and remeshing. IEEE Trans. Vis. Comput. Graph. 16, 1, 95–108. Google ScholarDigital Library
    18. Lefebvre, S., and Hoppe, H. 2006. Appearance-space texture synthesis. ACM Trans. Graph. 25, 3, 541–548. Google ScholarDigital Library
    19. Lévy, B., and Bonneel, N. 2012. Variational anisotropic surface meshing with Voronoi parallel linear enumeration. In Proc. 21st Int. Meshing Roundtable, 349–366.Google Scholar
    20. Li, Y., Bao, F., Zhang, E., Kobayashi, Y., and Wonka, P. 2011. Geometry synthesis on surfaces using field-guided shape grammars. IEEE Trans. Vis. Comput. Graph. 17, 2, 231–243. Google ScholarDigital Library
    21. Ling, R., Huang, J., Sun, F., Juttler, B., Bao, H., and Wang, W. 2011. Spectral quadrangulation with boundary conformation. Tech. rep., TR-2011-13, The University of Hong Kong.Google Scholar
    22. Liu, L., Zhang, L., Xu, Y., Gotsman, C., and Gortler, S. J. 2008. A local/global approach to mesh parameterization. Comput. Graph. Forum 27, 5, 1495–1504. Google ScholarDigital Library
    23. Liu, Y., Xu, W., Wang, J., Zhu, L., Guo, B., Chen, F., and Wang, G. 2011. General planar quadrilateral mesh design using conjugate direction field. ACM Trans. Graph. 30, 6. Google ScholarDigital Library
    24. Marinov, M., and Kobbelt, L. 2004. Direct anisotropic quad-dominant remeshing. In Proc. 12th Pacific Graphics, 207–216. Google ScholarDigital Library
    25. Nash, J. 1956. The imbedding problem for Riemannian manifolds. Annals of Mathematics 63, 1, 20–63.Google ScholarCross Ref
    26. Pal, K., Schüller, C., Panozzo, D., Sorkine-Hornung, O., and Weyrich, T. 2014. Interactive restoration of historical documents. Comput. Graph. Forum (Proc. Eurographics) 33, 2.Google ScholarDigital Library
    27. Palacios, J., and Zhang, E. 2007. Rotational symmetry field design on surfaces. ACM Trans. Graph. 26, 3. Google ScholarDigital Library
    28. Palacios, J., and Zhang, E. 2011. Interactive visualization of rotational symmetry fields on surfaces. IEEE Trans. Vis. Comput. Graph. 17, 7, 947–955. Google ScholarDigital Library
    29. Panozzo, D., Block, P., and Sorkine-Hornung, O. 2013. Designing unreinforced masonry models. ACM Trans. Graph. 32, 4, 91:1–91:12. Google ScholarDigital Library
    30. Pietroni, N., Tarini, M., Sorkine, O., and Zorin, D. 2011. Global parametrization of range image sets. ACM Trans. Graph. 30, 6. Google ScholarDigital Library
    31. Pinkall, U., Juni, S. D., and Polthier, K. 1993. Computing discrete minimal surfaces and their conjugates. Experimental Mathematics 2, 1, 15–36.Google ScholarCross Ref
    32. Ray, N., Li, W. C., Lévy, B., Sheffer, A., and Alliez, P. 2006. Periodic global parameterization. ACM Trans. Graph. 25, 1460–1485. Google ScholarDigital Library
    33. Ray, N., Vallet, B., Li, W. C., and Lévy, B. 2008. N-symmetry direction field design. ACM Trans. Graph. 27, 2, 10:1–10:13. Google ScholarDigital Library
    34. Ray, N., Vallet, B., Alonso, L., and Levy, B. 2009. Geometry-aware direction field processing. ACM Trans. Graph. 29, 1:1–1:11. Google ScholarDigital Library
    35. Rossignac, J., and Vinacua, A. 2011. Steady affine motions and morphs. ACM Trans. Graph. 30, 5, 116:1–116:16. Google ScholarDigital Library
    36. Schaefer, S., McPhail, T., and Warren, J. D. 2006. Image deformation using moving least squares. ACM Trans. Graph. 25, 3, 533–540. Google ScholarDigital Library
    37. Sorkine, O., and Alexa, M. 2007. As-rigid-as-possible surface modeling. In Proc. Symp. Geometry Processing, 109–116. Google ScholarDigital Library
    38. Sorkine, O., Cohen-Or, D., Goldenthal, R., and Lischinski, D. 2002. Bounded-distortion piecewise mesh parameterization. In IEEE Visualization, 355–362. Google ScholarDigital Library
    39. Takayama, K., Panozzo, D., Sorkine-Hornung, A., and Sorkine-Hornung, O. 2013. Sketch-based generation and editing of quad meshes. ACM Trans. Graph. 32, 4, 97:1–97:8. Google ScholarDigital Library
    40. Tarini, M., Puppo, E., Panozzo, D., Pietroni, N., and Cignoni, P. 2011. Simple quad domains for field aligned mesh parametrization. ACM Trans. Graph. 30, 6. Google ScholarDigital Library
    41. Vouga, E., Höbinger, M., Wallner, J., and Pottmann, H. 2012. Design of self-supporting surfaces. ACM Trans. Graph. 31, 87:1–87:11. Google ScholarDigital Library
    42. Wardetzky, M., Mathur, S., Kälberer, F., and Grinspun, E. 2007. Discrete Laplace operators: No free lunch. In Proc. Symp. Geometry Processing, 33–37. Google ScholarDigital Library
    43. Yücer, K., Jacobson, A., Hornung, A., and Sorkine, O. 2012. Transfusive image manipulation. ACM Trans. Graph. 31, 6, 176:1–176:9. Google ScholarDigital Library
    44. Zhang, E., Mischaikow, K., and Turk, G. 2006. Vector field design on surfaces. ACM Trans. Graph. 25, 4, 1294–1326. Google ScholarDigital Library
    45. Zhang, M., Huang, J., Liu, X., and Bao, H. 2010. A wave-based anisotropic quadrangulation method. ACM Trans. Graph. 29, 118:1–118:8. Google ScholarDigital Library
    46. Zhong, Z., Guo, X., Wang, W., Lévy, B., Sun, F., Liu, Y., and Mao, W. 2013. Particle-based anisotropic surface meshing. ACM Trans. Graph. 32, 4, 99:1–99:14. Google ScholarDigital Library


ACM Digital Library Publication:



Overview Page: