“Frame-Based Elastic Models” by Gilles, Bousquet, Faure and Pai

  • ©Benjamin Gilles, Guillaume Bousquet, François Faure, and Dinesh K. Pai




    Frame-Based Elastic Models



    We present a new type of deformable model which combines the realism of physically-based continuum mechanics models and the usability of frame-based skinning methods. The degrees of freedom are coordinate frames. In contrast with traditional skinning, frame positions are not scripted but move in reaction to internal body forces. The displacement field is smoothly interpolated using dual quaternion blending. The deformation gradient and its derivatives are computed at each sample point of a deformed object and used in the equations of Lagrangian mechanics to achieve physical realism. This allows easy and very intuitive definition of the degrees of freedom of the deformable object. The meshless discretization allows on-the-fly insertion of frames to create local deformations where needed. We formulate the dynamics of these models in detail and describe some precomputations that can be used for speed. We show that our method is effective for behaviors ranging from simple unimodal deformations to complex realistic deformations comparable with Finite Element simulations. To encourage its use, the software will be freely available in the simulation platform SOFA.


    1. Adams, B., Ovsjanikov, M., Wand, M., Seidel, H.-P., and Guibas, L. 2008. Meshless modeling of deformable shapes and their motion. In Proceedings of the Symposium on Computer Animation. 77–86.
    2. Allard, J., Faure, F., Courtecuisse, H., Falipou, F., Duriez, C., and Kry, P. 2010. Volume contact constraints at arbitrary resolution. ACM Trans. Graph. 29, 3.
    3. An, S. S., Kim, T., and James, D. L. 2008. Optimizing cubature for efficient integration of subspace deformations. ACM Trans. Graph. 27, 5, 1–10.
    4. Baraff, D. and Witkin, A. 1998. Large steps in cloth simulation. Comput. Graph. 32, 106–117.
    5. Barbič, J. and James, D. L. 2005. Real-Time subspace integration for St. Venant-Kirchhoff deformable models. ACM Trans. Graph. 24, 3, 982–990.
    6. Bathe, K. 1996. Finite Element Procedures. Prentice Hall.
    7. Cotin, S., Delingette, H., and Ayache, N. 1999. Real-time elastic deformations of soft tissues for surgery simulation. IEEE Trans. Visual. Comput. Graph. 5, 62–73.
    8. Debunne, G., Desbrun, M., Cani, M.-P., and Barr, A. 2001. Dynamic real-time deformations using space and time adaptive sampling. In Proceedings of the SIGGRAPH Computer Graphics Conference, 31–36.
    9. Faure, F., Barbier, S., Allard, J., and Falipou, F. 2008. Image-based collision detection and response between arbitrary volumetric objects. In Proceedings of the ACM Siggraph/Eurographics Symposium on Computer Animation.
    10. Fries, T.-P. and Matthies, H. 2003. Classification and overview of meshfree methods. Tech. rep., TU Brunswick, Germany.
    11. Gourret, J.-P., Thalmann, N. M., and Thalmann, D. 1989. Simulation of object and human skin formations in a grasping task. Comput. Graph. 23, 3, 21–30. 
    12. Grinspun, E., Krysl, P., and Schröder, P. 2002. Charms: A simple framework for adaptive simulation. In Proceedings of the SIGGRAPH Computer Graphics Conference, 281–290. 
    13. Gross, M. and Pfister, H. 2007. Point-Based Graphics. Morgan Kaufmann. 
    14. Han, D.-P., Wei, Q., and Li, Z.-X. 2008. Kinematic control of free rigid bodies using dual quaternions. Int. J. Autom. Comput. 5, 3, 319–324.
    15. Irving, G., Teran, J., and Fedkiw, R. 2006. Tetrahedral and hexahedral invertible finite elements. Graph. Models 68, 2. 
    16. Joshi, P., Meyer, M., DeRose, T., Green, B., and Sanocki, T. 2007. Harmonic coordinates for character articulation. ACM Trans. Graph. 26, 3, 71. 
    17. Kaufmann, P., Martin, S., Botsch, M., and Gross, M. 2008. Flexible simulation of deformable models using discontinuous galerkin fem. In Proceedings of the Symposium on Computer Animation. 
    18. Kavan, Collins, Zara, and O’Sullivan. 2007. Skinning with dual quaternions. In Proceedings of the Symposium on Interactive 3D Graphics and Games. 39–46. 
    19. Kavan, L., Collins, S., Zara, J., and O’Sullivan, C. 2008. Geometric skinning with approximate dual quaternion blending. ACM Trans. Graph. 27, 4. 
    20. Magnenat-Thalmann, N., Laperrière, R., and Thalmann, D. 1988. Joint dependent local deformations for hand animation and object grasping. In Proceedings of the Conference on Graphics Interface. 26–33. 
    21. Martin, S., Kaufmann, P., Botsch, M., Grinspun, E., and Gross, M. 2010. Unified simulation of elastic rods, shells, and solids. Comput. Graph. 29, 3. 
    22. Martin, S., Kaufmann, P., Botsch, M., Wicke, M., and Gross, M. 2008. Polyhedral finite elements using harmonic basis functions. Comput. Graph. Forum 27, 5. 
    23. Müller, M. and Gross, M. 2004. Interactive virtual materials. In Graphics Interface.
    24. Müller, M., Heidelberger, B., Teschner, M., and Gross, M. 2005. Meshless deformations based on shape matching. ACM Trans. Graph. 24, 3, 471–478. 
    25. Müller, M., Keiser, R., Nealen, A., Pauly, M., Gross, M., and Alexa, M. 2004. Point based animation of elastic, plastic and melting objects. In Proceedings of the Symposium on Computer Animation. 141–151. 
    26. Nadler, B. and Rubin, M. 2003. A new 3-d finite element for nonlinear elasticity using the theory of a cosserat point. Int. J. Solids Struct. 40, 4585–4614.
    27. Nealen, A., Müller, M., Keiser, R., Boxerman, E., and Carlson, M. 2005. Physically based deformable models in computer graphics. Comput. Graph. Forum. 25, 4, 809–836.
    28. Nesme, M., Kry, P., Jerabkova, L., and Faure, F. 2009. Preserving Topology and Elasticity for Embedded Deformable Models. In Proceedings of the SIGGRAPH Computer Graphics Conference. 
    29. O’Brien, J. and Hodgins, J. 1999. Graphical models and animation of brittle fracture. In Proceedings of the SIGGRAPH Computer Graphics Conference, 137–146. 
    30. Pai, D. K. 2002. Strands: Interactive simulation of thin solids using Cosserat models. Comput. Graph. Forum 21, 3, 347–352.
    31. Platt, S. and Badler, N. 1981. Animating facial expressions. In Proceedings of the SIGGRAPH Computer Graphics Conference. 245–252.
    32. Sifakis, E., Der, K. G., and Fedkiw, R. 2007. Arbitrary cutting of deformable tetrahedralized objects. In Proceedings of the Symposium on Computer Animation.
    33. Terzopoulos, D., Platt, J., Barr, A., and Fleischer, K. 1987. Elastically deformable models. In Proceedings of the SIGGRAPH Computer Graphics Conference, M. C. Stone, Ed. Vol. 21. 205–214. 
    34. Terzopoulos, D. and Qin, H. 1994. Dynamic nurbs with geometric constraints for interactive sculpting. ACM Trans. Graph. 13, 2, 103–136.
    35. Teschner, M., Heidelberger, B., Muller, M., and Gross, M. 2004. A versatile and robust model for geometrically complex deformable solids. In Proceedings of the Computer Graphics International Conference (CGI).
    36. Weber, O., Sorkine, O., Lipman, Y., and Gotsman, C. 2007. Context-aware skeletal shape deformation. In Comput Graph. Forum. 26.
    37. Weiss, J., Maker, B., and Govindjee, S. 1996. Finite element implementation of incompressible, transversely isotropic hyperelasticity. Comput. Meth. Appl. Mech. Engin. 135, 107–128.

ACM Digital Library Publication:

Overview Page: