“Frame field generation through metric customization” by Jiang, Fang, Huang, Bao, Tong, et al. …
Conference:
Type(s):
Title:
- Frame field generation through metric customization
Session/Category Title: Geometry Field Trip
Presenter(s)/Author(s):
Moderator(s):
Abstract:
This paper presents a new technique for frame field generation. As generic frame fields (with arbitrary anisotropy, orientation, and sizing) can be regarded as cross fields in a specific Riemannian metric, we tackle frame field design by first computing a discrete metric on the input surface that is compatible with a sparse or dense set of input constraints. The final frame field is then found by computing an optimal cross field in this customized metric. We propose frame field design constraints on alignment, size, and skewness at arbitrary locations on the mesh as well as along feature curves, offering much improved flexibility over previous approaches. We demonstrate the advantages of our frame field generation through the automatic quadrangulation of man-made and organic shapes with controllable anisotropy, robust handling of narrow surface strips, and precise feature alignment. We also extend our technique to the design of n-vector fields.
References:
1. Alliez, P., Cohen-Steiner, D., Devillers, O., Lévy, B., and Desbrun, M. 2003. Anisotropic polygonal remeshing. ACM Trans. Graph. 22, 3 (July), 485–493. Google ScholarDigital Library
2. Ben-Chen, M., Gotsman, C., and Bunin, G. 2008. Conformal flattening by curvature prescription and metric scaling. Comput. Graph. Forum 27, 2, 449–458.Google ScholarCross Ref
3. Bommes, D., Zimmer, H., and Kobbelt, L. 2009. Mixed-integer quadrangulation. ACM Trans. Graph. 28, 3 (July), 77:1–77:10. Google ScholarDigital Library
4. Crane, K., Desbrun, M., and Schrder, P. 2010. Trivial connections on discrete surfaces. Comput. Graph. Forum 29, 5, 1525–1533.Google ScholarCross Ref
5. de Goes, F., Liu, B., Budninskiy, M., Tong, Y., and Desbrun, M. 2014. Discrete 2-tensor fields on triangulations. Comput. Graph. Forum 33, 5, 13–24. Google ScholarDigital Library
6. Diamanti, O., Vaxman, A., Panozzo, D., and Sorkine-Hornung, O. 2014. Designing n-polyvector fields with complex polynomials. Comput. Graph. Forum 33, 5. Google ScholarDigital Library
7. Ebke, H.-C., Bommes, D., Campen, M., and Kobbelt, L. 2013. Qex: Robust quad mesh extraction. ACM Trans. Graph. 32, 6 (Nov.), 168:1–168:10. Google ScholarDigital Library
8. Hertzmann, A., and Zorin, D. 2000. Illustrating smooth surfaces. In Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques, 517–526. Google ScholarDigital Library
9. Jin, M., Wang, Y., Yau, S.-T., and Gu, X. 2004. Optimal global conformal surface parameterization. In IEEE Visualization, 267–274. Google ScholarDigital Library
10. Jin, M., Kim, J., and Gu, X. D. 2007. Discrete surface ricci flow: Theory and applications. In Proceedings of the 12th IMA International Conference on Mathematics of Surfaces XII, Springer-Verlag, 209–232. Google ScholarDigital Library
11. Knöppel, F., Crane, K., Pinkall, U., and Schröder, P. 2013. Globally optimal direction fields. ACM Trans. Graph. 32, 4 (July), 59:1–59:10. Google ScholarDigital Library
12. Lai, Y.-K., Jin, M., Xie, X., He, Y., Palacios, J., Zhang, E., Hu, S.-M., and Gu, X. 2010. Metric-driven RoSy field design and remeshing. IEEE Trans. Vis. Comput. Graph. 16, 1 (Jan.), 95–108. Google ScholarDigital Library
13. Ling, R., Huang, J., Jüttler, B., Sun, F., Bao, H., and Wang, W. 2014. Spectral quadrangulation with feature curve alignment and element size control. ACM Trans. Graph. 34, 1 (Dec.), 11:1–11:11. Google ScholarDigital Library
14. Liu, Y., Xu, W., Wang, J., Zhu, L., Guo, B., Chen, F., and Wang, G. 2011. General planar quadrilateral mesh design using conjugate direction field. ACM Trans. Graph. 30, 6 (Dec.), 140:1–140:10. Google ScholarDigital Library
15. Liu, B., Tong, Y., de Goes, F., and Desbrun, M. 2015. Discrete connection and covariant derivative for vector field analysis and design. ACM Trans. Graph. (to appear).Google Scholar
16. Moler, C., and Loan, C. V. 2003. Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later. SIAM Review 45, 1, 3–49.Google ScholarDigital Library
17. Myles, A., and Zorin, D. 2012. Global parametrization by incremental flattening. ACM Trans. Graph. 31, 4 (July), 109:1–09:11. Google ScholarDigital Library
18. Myles, A., and Zorin, D. 2013. Controlled-distortion constrained global parametrization. ACM Trans. Graph. 32, 4 (July), 105:1–105:14. Google ScholarDigital Library
19. Oprea, J. 2007. Differential Geometry and Its Applications. Mathematical Association of America.Google Scholar
20. Palacios, J., and Zhang, E. 2007. Rotational symmetry field design on surfaces. ACM Trans. Graph. 26, 3 (July). Google ScholarDigital Library
21. Panozzo, D., Puppo, E., Tarini, M., and Sorkine-Hornung, O. 2014. Frame fields: Anisotropic and non-orthogonal cross fields. ACM Trans. Graph. 33, 4 (July), 134:1–134:11. Google ScholarDigital Library
22. Ray, N., Vallet, B., Li, W. C., and Lévy, B. 2008. N-symmetry direction field design. ACM Trans. Graph. 27, 2 (May), 10:1–10:13. Google ScholarDigital Library
23. Ray, N., Vallet, B., Alonso, L., and Levy, B. 2009. Geometry-aware direction field processing. ACM Trans. Graph. 29, 1 (Dec.), 1:1–1:11. Google ScholarDigital Library
24. Schelter, W., 2015. Maxima — a computer algebra system (version 5.35). http://maxima.sourceforge.net.Google Scholar
25. Springborn, B., Schröder, P., and Pinkall, U. 2008. Conformal equivalence of triangle meshes. ACM Trans. Graph. 27, 3 (Aug.), 77:1–77:11. Google ScholarDigital Library