“Fairy Lights in Femtoseconds: Aerial and Volumetric Graphics Rendered by a Focused Femtosecond Laser Combined With Computational Holographic Fields” by Ochiai, Kumagai, Hoshi, Rekimoto and Hasegawa

  • ©Yoichi Ochiai, Kota Kumagai, Takayuki Hoshi, Jun Rekimoto, and Satoshi Hasegawa

Conference:


Type:


Title:

    Fairy Lights in Femtoseconds: Aerial and Volumetric Graphics Rendered by a Focused Femtosecond Laser Combined With Computational Holographic Fields

Presenter(s)/Author(s):


Session Title: COMPUTATIONAL DISPLAY

Moderator(s):



Abstract:


    We present a method of rendering aerial and volumetric graphics using femtosecond lasers. A high-intensity laser excites physical matter to emit light at an arbitrary three-dimensional position. Popular applications can thus be explored, especially because plasma induced by a femtosecond laser is less harmful than that generated by a nanosecond laser. There are two methods of rendering graphics with a femtosecond laser in air: producing holograms using spatial light modulation technology and scanning of a laser beam by a galvano mirror. The holograms and workspace of the system proposed here occupy a volume of up to 1 cm3; however, this size is scalable depending on the optical devices and their setup. This article provides details of the principles, system setup, and experimental evaluation, and discusses the scalability, design space, and applications of this system. We tested two laser sources: an adjustable (30–100fs) laser that projects up to 1,000 pulses/s at an energy of up to 7mJ/pulse and a 269fs laser that projects up to 200,000 pulses/s at an energy of up to 50μJ/pulse. We confirmed that the spatiotemporal resolution of volumetric displays implemented using these laser sources is 4,000 and 200,000 dots/s, respectively. Although we focus on laser-induced plasma in air, the discussion presented here is also applicable to other rendering principles such as fluorescence and microbubbles in solid or liquid materials.

References:


    1. M. V. Ammosov, N. B. Delone, and V. P. Krainov. 1986. Tunnel ionization of complex atoms and of atomic ions in an alternating electromagnetic field. Soviet Physics – JETP 64, 6 (1986), 1191–1194.
    2. Peter C. Barnum, Srinivasa G. Narasimhan, and Takeo Kanade. 2010. A Multi-layered display with water drops. ACM Trans. Graph. 29, 4 (July 2010), Article 76, 7 pages. DOI:http://dx.doi.org/10.1145/1778765.1778813 
    3. Jörgen Bengtsson. 1994. Kinoform design with an optimal-rotation-angle method. Appl. Opt. 33, 29 (Oct. 1994), 6879–6884. DOI:http://dx.doi.org/10.1364/AO.33.006879
    4. P. Benzie, J. Watson, P. Surman, I. Rakkolainen, K. Hopf, H. Urey, V. Sainov, and C. von Kopylow. 2007. A survey of 3DTV displays: Techniques and technologies. IEEE Transactions on Circuits and Systems for Video Technology 17, 11 (Nov. 2007), 1647–1658. DOI:http://dx.doi.org/10.1109/TCSVT.2007.905377 
    5. Clarence P. Cain, William P. Roach, David J. Stolarski, Gary D. Noojin, Semih S. Kumru, Kevin L. Stockton, Justin J. Zohner, and Benjamin A. Rockwell. 2007. Infrared laser damage thresholds for skin at wavelengths from 0.810 to 1.54 microns for femto-to-microsecond pulse durations. In Proceedings of SPIE, Vol. 6435. 64350W–64350W–12. DOI:http://dx.doi.org/10.1117/12.715199
    6. James Clar. 2008. Traffic. Retrieved from http://www.viatraffic.org/index.php?page=3d-display-cube-v4.
    7. Elizabeth Downing, Lambertus Hesselink, John Ralston, and Roger Macfarlane. 1996. A three-color, solid-state, three-dimensional display. Science 273, 5279 (1996), 1185–1189. DOI:http://dx.doi.org/10.1126/science.273.5279.1185
    8. S. Eitoku, T. Tanikawa, and Y. Suzuki. 2006. Display composed of water drops for filling space with materialized virtual three-dimensional objects. In Proceedings of the 2006 Virtual Reality Conference. 159–166. DOI:http://dx.doi.org/10.1109/VR.2006.51 
    9. Gregg E. Favalora, Joshua Napoli, Deirdre M. Hall, Rick K. Dorval, Michael Giovinco, Michael J. Richmond, and Won S. Chun. 2002. 100-million-voxel volumetric display. In Proceedings of SPIE, Vol. 4712. 300–312. DOI:http://dx.doi.org/10.1117/12.480930
    10. Sean Follmer, Daniel Leithinger, Alex Olwal, Akimitsu Hogge, and Hiroshi Ishii. 2013. inFORM: Dynamic physical affordances and constraints through shape and object actuation. In Proceedings of the 26th Annual ACM Symposium on User Interface Software and Technology (UIST’13). ACM, New York, NY, 417–426. DOI:http://dx.doi.org/10.1145/2501988.2502032 
    11. Tovi Grossman and Ravin Balakrishnan. 2006. The design and evaluation of selection techniques for 3D volumetric displays. In Proceedings of the 19th Annual ACM Symposium on User Interface Software and Technology (UIST’06). ACM, New York, NY, 3–12. DOI:http://dx.doi.org/10.1145/1166253.1166257 
    12. Satoshi Hasegawa and Yoshio Hayasaki. 2013. Liquid volumetric display with parallel optical access by computer-generated hologram. In Digital Holography and Three-Dimensional Imaging (2013), DTh2A.7. DOI:http://dx.doi.org/ 10.1364/DH.2013.DTh2A.7
    13. Tomoko Hashida, Yasuaki Kakehi, and Takeshi Naemura. 2011. Photochromic sculpture: Volumetric color-forming pixels. In ACM SIGGRAPH 2011 Emerging Technologies (SIGGRAPH’11). ACM, New York, NY, Article 11, 1 page. DOI:http://dx.doi.org/10.1145/2048259.2048270 
    14. Y. Hayasaki, T. Sugimoto, A. Takita, and N. Nishida. 2005. Variable holographic femtosecond laser processing by use of a spatial light modulator. Applied Physics Letters 87, 3 (2005), 031101.
    15. Takayuki Hoshi, Masafumi Takahashi, Kei Nakatsuma, and Hiroyuki Shinoda. 2009. Touchable holography. In ACM SIGGRAPH 2009 Emerging Technologies (SIGGRAPH’09). ACM, New York, NY, Article 23, 1 pages. DOI:http://dx.doi.org/ 10.1145/1597956.1597979 
    16. H. Ishikawa and H. Saito. 2008a. Closed-line based representation of 3D shape for point cloud for laser plasma scanning 3D display. In Proceedings of the 18th International Conference on Artificial Reality and Telexistence (ICAT’08). 28–35.
    17. H. Ishikawa and H. Saito. 2008b. Point cloud representation of 3D shape for laser-plasma scanning 3D display. In Proceedings of the 34th Annual IEEE Conference on Industrial Electronics (IECON’08). 1913–1918. DOI:http://dx.doi.org/10.1109/IECON.2008.4758248
    18. Hiroyo Ishikawa, Hayato Watanabe, Satoshi Aoki, Hideo Saito, Satoru Shimada, Masayuki Kakehata, Yuji Tsukada, and Hidei Kimura. 2011. Surface representation of 3D object for aerial 3D display. In Proceedings of SPIE, Vol. 7863. 78630X–78630X–8. DOI:http://dx.doi.org/10.1117/12.872397
    19. Hiroo Iwata, Hiroaki Yano, Fumitaka Nakaizumi, and Ryo Kawamura. 2001. Project FEELEX: Adding haptic surface to graphics. In Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH’01). ACM, New York, NY, 469–476. DOI:http://dx.doi.org/10.1145/383259.383314 
    20. D. G. Jansson and E. P. Berlin. 1979. A three-dimensional computer display. In Proceedings of the 1st Annual Conference of Computer Graphics in CAD/ CAM System, 1979.
    21. Andrew Jones, Ian McDowall, Hideshi Yamada, Mark Bolas, and Paul Debevec. 2007. Rendering for an interactive 360° light field display. ACM Transactions on Graphics 26, 3 (July 2007), Article 40. DOI:http://dx.doi.org/10.1145/1276377.1276427 
    22. Abhijit Karnik, Archie Henderson, Andrew Dean, Howard Pang, Thomas Campbell, Satoshi Sakurai, Guido Herrmann, Shahram Izadi, Yoshifumi Kitamura, and Sriram Subramanian. 2011. VORTEX: Design and implementation of an interactive volumetric display. In CHI’11 Extended Abstracts on Human Factors in Computing Systems (CHI EA’11). ACM, New York, NY, 2017–2022. DOI:http://dx.doi.org/10.1145/1979742.1979870 
    23. L. V. Keldysh. 1965. Ionization in the field of a strong electromagnetic wave. Soviet Physics JETP 20 (May 1965), 1307–1314.
    24. Hidei Kimura, Akira Asano, Issei Fujishiro, Ayaka Nakatani, and Hayato Watanabe. 2011. True 3D display. In ACM SIGGRAPH 2011 Emerging Technologies (SIGGRAPH’11). ACM, New York, NY, Article 20, 1 page. DOI:http://dx.doi.org/10.1145/2048259.2048279 
    25. Hidei Kimura, Taro Uchiyama, and Hiroyuki Yoshikawa. 2006. Laser produced 3D display in the air. In ACM SIGGRAPH 2006 Emerging Technologies (SIGGRAPH’06). ACM, New York, NY, Article 20. DOI:http://dx.doi.org/10.1145/1179133.1179154 
    26. Cha Lee, Stephen DiVerdi, and Tobias Hollerer. 2009. Depth-fused 3D imagery on an immaterial display. IEEE Transactions on Visualization and Computer Graphics 15, 1 (2009), 20–33. 
    27. Jinha Lee, Rehmi Post, and Hiroshi Ishii. 2011. ZeroN: Mid-air tangible interaction enabled by computer controlled magnetic levitation. In Proceedings of the 24th Annual ACM Symposium on User Interface Software and Technology (UIST’11). ACM, New York, NY, 327–336. DOI:http://dx.doi.org/10.1145/2047196.2047239 
    28. D. L. Macfarlane. 1994. Volumetric three-dimensional display. Applied Optics 33, 31 (Nov. 1994), 7453–7457.
    29. Belen Masia, Gordon Wetzstein, Piotr Didyk, and Diego Gutierrez. 2013. A survey on computational displays: Pushing the boundaries of optics, computation, and perception. Computers & Graphics 37, 8 (2013), 1012–1038. DOI:http://dx.doi.org/10.1016/j.cag.2013.10.003 
    30. Yasushi Matoba, Taro Tokui, Ryo Sato, Toshiki Sato, and Hideki Koike. 2012. SplashDisplay: Volumetric projection using projectile beads. In ACM SIGGRAPH 2012 Emerging Technologies (SIGGRAPH’12). ACM, New York, NY, Article 19, 1 page. DOI:http://dx.doi.org/10.1145/2343456.2343475 
    31. Y. Ochiai, T. Hoshi, A. Oyama, and J. Rekimoto. 2013. Poppable display: A display that enables popping, breaking, and tearing interactions with people. In Proceedings of the 2013 IEEE 2nd Global Conference on Consumer Electronics (GCCE’13). 124–128. DOI:http://dx.doi.org/10.1109/GCCE.2013.6664771
    32. Yoichi Ochiai, Takayuki Hoshi, and Jun Rekimoto. 2014. Pixie dust: Graphics generated by levitated and animated objects in computational acoustic-potential field. ACM Transactions on Graphics 33, 4 (July 2014), Article 85, 13 pages. DOI:http://dx.doi.org/10.1145/2601097.2601118 
    33. E. Parker. 1948. Three-dimensional cathode-ray tube displays. Journal of the Institution of Electrical Engineers – Part III: Radio and Communication Engineering 95, 37 (September 1948), 371–387.
    34. Thiago Pereira, Szymon Rusinkiewicz, and Wojciech Matusik. 2014. Computational light routing: 3D printed optical fibers for sensing and display. ACM Transactions on Graphics 33, 3 (June 2014), Article 24, 13 pages. DOI:http://dx.doi.org/10.1145/2602140 
    35. K. Perlin and J. Y. Han. 2006. Volumetric display with dust as the participating medium. (Feb. 14 2006). Retrieved from https://www.google.com/patents/US6997558 US Patent 6, 997, 558.
    36. Ivan Poupyrev, Tatsushi Nashida, Shigeaki Maruyama, Jun Rekimoto, and Yasufumi Yamaji. 2004. Lumen: Interactive visual and shape display for calm computing. In ACM SIGGRAPH 2004 Emerging Technologies (SIGGRAPH’04). ACM, New York, NY, 17. DOI:http://dx.doi.org/10.1145/1186155.1186173 
    37. Ismo Rakkolainen, Stephen DiVerdi, Alex Olwal, Nicola Candussi, Tobias Hüllerer, Markku Laitinen, Mika Piirto, and Karri Palovuori. 2005a. The interactive fogscreen. In ACM SIGGRAPH 2005 Emerging Technologies (SIGGRAPH’05). ACM, New York, NY, Article 8. DOI:http://dx.doi.org/10.1145/1187297.1187306 
    38. Ismo Rakkolainen, Stephen DiVerdi, Alex Olwal, Nicola Candussi, Tobias Hüllerer, Markku Laitinen, Mika Piirto, and Karri Palovuori. 2005b. The interactive fogscreen. In ACM SIGGRAPH 2005 Emerging Technologies (SIGGRAPH’05). ACM, New York, NY, Article 8. DOI:http://dx.doi.org/10.1145/1187297.1187306 
    39. Hideo Saito, Hidei Kimura, Satoru Shimada, Takeshi Naemura, Jun Kayahara, Songkran Jarusirisawad, Vincent Nozick, Hiroyo Ishikawa, Toshiyuki Murakami, Jun Aoki, Akira Asano, Tatsumi Kimura, Masayuki Kakehata, Fumio Sasaki, Hidehiko Yashiro, Masahiko Mori, Kenji Torizuka, and Kouta Ino. 2008. Laser-plasma scanning 3D display for putting digital contents in free space. In Proceedings of SPIE 6803 (2008), 680309–680309–10. DOI:http://dx.doi.org/10.1117/12.768068
    40. Parviz Soltan, John A. Trias, Waldo R. Robinson, and Weldon J. Dahlke. 1992. Laser-based 3-D volumetric display system. In Proceedings of SPIE, Vol. 1664. 177–192. DOI:http://dx.doi.org/10.1117/12.60362
    41. Alan Sullivan. 2004. DepthCube solid-state 3D volumetric display. In Proceedings of SPIE, Vol. 5291. 279–284. DOI:http://dx.doi.org/10.1117/12.527543
    42. Ivan E. Sutherland. 1968. A head-mounted three dimensional display. In Proceedings of the December 9-11, 1968, Fall Joint Computer Conference, Part I (AFIPS’68 (Fall, part I)). ACM, New York, NY, 757–764. DOI:http://dx.doi.org/10.1145/1476589.1476686 
    43. Karl Willis, Eric Brockmeyer, Scott Hudson, and Ivan Poupyrev. 2012. Printed optics: 3D printing of embedded optical elements for interactive devices. In Proceedings of the 25th Annual ACM Symposium on User Interface Software and Technology (UIST’12). ACM, New York, NY, 589–598. DOI:http://dx.doi.org/10.1145/2380116.2380190 
    44. Takumi Yoshida, Sho Kamuro, Kouta Minamizawa, Hideaki Nii, and Susumu Tachi. 2010. RePro3D: Full-parallax 3D display using retro-reflective projection technology. In ACM SIGGRAPH 2010 Emerging Technologies (SIGGRAPH’10). ACM, New York, NY, Article 20, 1 page. DOI:http://dx.doi.org/10.1145/1836821.1836841

ACM Digital Library Publication: