“Fabricating spatially-varying subsurface scattering” by Dong, Wang, Pellacini, Tong and Guo

  • ©Yue Dong, Jiaping Wang, Fabio Pellacini, Xin Tong, and Baining Guo




    Fabricating spatially-varying subsurface scattering



    Many real world surfaces exhibit translucent appearance due to subsurface scattering. Although various methods exists to measure, edit and render subsurface scattering effects, no solution exists for manufacturing physical objects with desired translucent appearance. In this paper, we present a complete solution for fabricating a material volume with a desired surface BSSRDF. We stack layers from a fixed set of manufacturing materials whose thickness is varied spatially to reproduce the heterogeneity of the input BSSRDF. Given an input BSSRDF and the optical properties of the manufacturing materials, our system efficiently determines the optimal order and thickness of the layers. We demonstrate our approach by printing a variety of homogenous and heterogenous BSSRDFs using two hardware setups: a milling machine and a 3D printer.


    1. Arbree, A. 2009. Scalable And Heterogeneous Rendering Of Subsurface Scattering Materials. PhD thesis, Cornell University, Ithaca, New York. http://hdl.handle.net/1813/13986. Google ScholarDigital Library
    2. Arridge, S. R., and Schotland, J. 2009. Optical tomography: Forward and inverse problems. Inverse Problems 25, 12, 123010:(59pp).Google Scholar
    3. Baumgart, B. G. 1972. Winged edge polyhedron representation. Tech. rep., Stanford, CA, USA. Google ScholarDigital Library
    4. Chen, Y., Tong, X., Wang, J., Lin, S., Guo, B., and Shum, H.-Y. 2004. Shell texture functions. ACM Trans. Graph. 23, 3, 343–353. Google ScholarDigital Library
    5. Debevec, P., Hawkins, T., Tchou, C., Duiker, H.-P., Sarokin, W., and Sagar, M. 2000. Acquiring the reflectance field of a human face. In Proc. ACM SIGGRAPH, 145–156. Google ScholarDigital Library
    6. d’Eon, E., Luebke, D., and Enderton, E. 2007. Efficient Rendering of Human Skin. Eurographics Symposium on Rendering, 147–157. Google ScholarDigital Library
    7. Donner, C., and Jensen, H. W. 2005. Light diffusion in multi-layered translucent materials. ACM Trans. Graph. 24, 3, 1032–1039. Google ScholarDigital Library
    8. Donner, C., Weyrich, T., d’Eon, E., Ramamoorthi, R., and Rusinkiewicz, S. 2008. A layered, heterogeneous reflectance model for acquiring and rendering human skin. ACM Trans. Graph. 27, 5, 140. Google ScholarDigital Library
    9. Donner, C., Lawrence, J., Ramamoorthi, R., Hachisuka, T., Jensen, H. W., and Nayar, S. 2009. An empirical bssrdf model. ACM Transactions on Graphics 28, 3 (July), 30:1–30:10. Google ScholarDigital Library
    10. Dorsey, J., Edelman, A., Legakis, J., Jensen, H. W., and Pedersen, H. K. 1999. Modeling and rendering of weathered stone. In Proc. ACM SIGGRAPH, 225–234. Google ScholarDigital Library
    11. Ghosh, A., Hawkins, T., Peers, P., Frederiksen, S., and Debevec, P. 2008. Practical modeling and acquisition of layered facial reflectance. ACM Trans. Graph. 27, 5, 139. Google ScholarDigital Library
    12. Goesele, M., Lensch, H. P. A., Lang, J., Fuchs, C., and Seidel, H.-P. 2004. DISCO: acquisition of translucent objects. ACM Trans. Graph. 23, 3, 835–844. Google ScholarDigital Library
    13. Hanrahan, P., and Krueger, W. 1993. Reflection from layered surfaces due to subsurface scattering. In Proc. ACM SIGGRAPH, 165–174. Google ScholarDigital Library
    14. Hao, X., and Varshney, A. 2004. Real-time rendering of translucent meshes. In ACM Trans. Graph., vol. 23. 120–142. Google ScholarDigital Library
    15. Hašan, M., Fuchs, M., Matusik, W., Pfister, H., and Rusinkiewicz, S. M. 2010. Physical reproduction of materials with specified subsurface scattering. ACM Transactions on Graphics 29, 3 (Aug.). Google ScholarDigital Library
    16. Ishimaru, A. 1978. Wave Propagation and Scattering in Random Media. Academic Press.Google Scholar
    17. Jensen, H. W., Marschner, S. R., Levoy, M., and Hanrahan, P. 2001. A practical model for subsurface light transport. In Proc. ACM SIGGRAPH, 511–518. Google ScholarDigital Library
    18. Lensch, H. P. A., Goesele, M., Bekaert, P., Magnor, J. K. M. A., Lang, J., and Seidel, H.-P. 2003. Interactive rendering of translucent objects. Computer Graphics Forum 22, 2, 195–205.Google ScholarCross Ref
    19. Matusik, W., Ajdin, B., Gu, J., Lawrence, J., Lensch, H. P. A., Pellacini, F., and Rusinkiewicz, S. 2009. Printing spatially-varying reflectance. ACM Trans. Graph. 28, 3, 1–6. Google ScholarDigital Library
    20. Mount, D., and Arya, S. 1997. ANN: A library for approximate nearest neighbor searching. In CGC 2nd Annual Fall Workshop on Computational Geometry.Google Scholar
    21. Nicodemus, F. E., Richmond, J. C., Hsia, J. J., Ginsberg, I. W., and Limperis, T. 1977. Geometrical Considerations and Nomenclature for Reflectance. National Bureau of Standards (US).Google Scholar
    22. Peers, P., vom Berge, K., Matusik, W., Ramamoorthi, R., Lawrence, J., Rusinkiewicz, S., and Dutré, P. 2006. A compact factored representation of heterogeneous subsurface scattering. ACM Trans. Graph. 25, 3, 746–753. Google ScholarDigital Library
    23. Pharr, M., and Hanrahan, P. M. 2000. Monte Carlo evaluation of non-linear scattering equations for subsurface reflection. In Proc. ACM SIGGRAPH, 275–286. Google ScholarDigital Library
    24. Porumbescu, S. D., Budge, B., Feng, L., and Joy, K. I. 2005. Shell maps. ACM Trans. Graph. 24, 3, 626–633. Google ScholarDigital Library
    25. Press, W. H., et al. 1992. Numerical Recipes in C (Second Edition).Google Scholar
    26. Song, Y., Tong, X., Pellacini, F., and Peers, P. 2009. SubEdit: a representation for editing measured heterogeneous subsurface scattering. ACM Transactions on Graphics 28, 3 (Aug.), 31:1–31:9. Google ScholarDigital Library
    27. Stam, J. 1995. Multiple scattering as a diffusion process. In Euro. Rendering Workshop, 41–50.Google ScholarCross Ref
    28. Tariq, S., gardner, A., Llamas, I., Jones, A., Debevec, P., and Turk, G. 2006. Efficiently estimation of spatially varying subsurface scattering parameters. In 11th Int’l Fall Workshop on Vision, Modeling, and Visualzation 2006, 165–174.Google Scholar
    29. Tong, X., Wang, J., Lin, S., Guo, B., and Shum, H.-Y. 2005. Modeling and rendering of quasi-homogeneous materials. ACM Trans. Graph. 24, 3, 1054–1061. Google ScholarDigital Library
    30. Vilbrandt, T., Malone, E., H., L., and Pasko, A. 2008. Universal desktop fabrication. In Heterogeneous Objects Modelling and Applications, 259–284. Google ScholarDigital Library
    31. Wang, R., Tran, J., and Luebke, D. 2005. All-frequency interactive relighting of translucent objects with single and multiple scattering. ACM Trans. Graph. 24, 3, 1202–1207. Google ScholarDigital Library
    32. Wang, J., Zhao, S., Tong, X., Lin, S., Lin, Z., Dong, Y., Guo, B., and Shum, H.-Y. 2008. Modeling and rendering of heterogeneous translucent materials using the diffusion equation. ACM Trans. Graph. 27, 1, 9:1–9:18. Google ScholarDigital Library
    33. Wang, R., Cheslack-Postava, E., Luebke, D., Chen, Q., Hua, W., Peng, Q., and Bao, H. 2008. Real-time editing and relighting of homogeneous translucent materials. The Visual Computer 24, 565–575(11). Google ScholarDigital Library
    34. Weyrich, T., Matusik, W., Pfister, H., Bickel, B., Donner, C., Tu, C., McAndless, J., Lee, J., Ngan, A., Jensen, H. W., and Gross, M. 2006. Analysis of human faces using a measurement-based skin reflectance model. ACM Trans. Graph. 25, 3, 1013–1024. Google ScholarDigital Library
    35. Weyrich, T., Peers, P., Matusik, W., and Rusinkiewicz, S. 2009. Fabricating microgeometry for custom surface reflectance. ACM Trans. Graph. 28, 3, 1–6. Google ScholarDigital Library
    36. Xu, K., Gao, Y., Li, Y., Ju, T., and Hu, S.-M. 2007. Real-time homogenous translucent material editing. Computer Graphics Forum 26, 3, 545–552.Google ScholarCross Ref

ACM Digital Library Publication:

Overview Page: