“Eulerian‐on‐Lagrangian Simulation” by Fan, Litven, Levin and Pai

  • ©Ye Fan, Joshua Litven, David I. W. Levin, and Dinesh K. Pai




    Eulerian‐on‐Lagrangian Simulation

Session/Category Title: Sounds & Solids




    We describe an Eulerian-on-Lagrangian solid simulator that reduces or eliminates many of the problems experienced by fully Eulerian methods but retains their advantages. Our method does not require the construction of an explicit object discretization and the fixed nature of the simulation mesh avoids tangling during large deformations. By introducing Lagrangian modes to the simulation we enable unbounded simulation domains and reduce the time-step restrictions which can plague Eulerian simulations. Our method features a new solver that can resolve contact between multiple objects while simultaneously distributing motion between the Lagrangian and Eulerian modes in a least-squares fashion. Our method successfully bridges the gap between Lagrangian and Eulerian simulation methodologies without having to abandon either one.


    1. Banks, J. W., Schwendeman, D. W., Kapila, A. K., and Henshaw, W. D. 2007. A high-resolution godunov method for compressible multimaterial flow on overlapping grids. J. Comput. Phys. 223, 1, 262–297.
    2. Barbic, J. and Zhao, Y. 2011. Real-time large-deformation substructuring. ACM Trans. Graph. 30, 91.
    3. Bargteil, A. W., Wojtan, C., Hodgins, J. K., and Turk, G. 2007. A finite element method for animating large viscoplastic flow. ACM Trans. Graph. 26, 3, 16:1–16:8.
    4. Barton, P. T. and Drikakis, D. 2010. An eulerian method for multicomponent problems in non-linear elasticity with sliding interfaces. J. Comput. Phys. 229, 15, 5518–5540.
    5. Batty, C. and Bridson, R. 2008. Accurate viscous free surfaces for buckling, coiling, and rotating liquids. In Proceedings of the ACM/Eurographics Symposium on Computer Animation. 219–228.
    6. Belytschko, T., Kam, L. W., and Moran, B. 2000. Nonlinear Finite Elements for Continua and Structures. John Wiley & Sons.
    7. Belytschko, T. and Kennedy, J. 1978. Computer models for subassembly simulation. Nuclear Engin. Des. 49, 1-2, 17–38.
    8. Belytschko, W. K. and Moran, B. 2000. Nonlinear Finite Elements for Continua and Structures. Wiley.
    9. Bridson, R. 2008. Fluid Simulation. A. K. Peters, Ltd., Natick, MA.
    10. Carlson, M., Mucha, P. J., Van Horn, III, R. B., and Turk, G. 2002. Melting and flowing. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA’02). 167–174.
    11. Foster, N. and Metaxas, D. 1996. Realistic animation of liquids. Graph. Models Image Process. 58, 5, 471–483.
    12. Galoppo, N., Otaduy, M., Tekin, S., Gross, M., and Lin, M. 2007. Soft articulated characters with fast contact handling. Comput. Graph. Forum. 26, 243–253.
    13. Goktekin, T. G., Bargteil, A. W., and O’Brien, J. F. 2004. A method for animating viscoelastic fluids. ACM Trans. Graph. 23, 463–468.
    14. Ito, K. and Kunisch, K. 2008. Lagrange Multiplier Approach to Variational Problems and Applications. SIAM, Philadelphia, PA.
    15. Kamrin, K. and Nave, J.-C. 2009. An eulerian approach to the simulation of deformable solids: Application to finite-strain elasticity. http://arxiv.org/PS_cache/arxiv/pdf/0901/0901.3799v2.pdf.
    16. Kamrin, K., Rycroft, C., and Nave, J. 2012. Reference map technique for finite-strain elasticity and fluid–solid interaction. J. Mech. Phys. Solids 60, 11.
    17. Lanczos, C. 1986. The Variational Principles of Mechanics. Dover Publications.
    18. Lentine, M., Aanjaneya, M., and Fedkiw, R. 2011. Mass and momentum conservation for fluid simulation. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation. (SCA’11). ACM Press, New York, 91–100.
    19. Levin, D. I. W., Litven, J., Jones, G. L., Sueda, S., and Pai, D. K. 2011. Eulerian solid simulation with contact. ACM Trans. Graph. 30, 36:1–36:10.
    20. Losasso, F., Shinar, T., Selle, A., and Fedkiw, R. 2006. Multiple interacting liquids. ACM Trans. Graph. 25, 3, 812–819.
    21. Miller, G. and Colella, P. 2001. A high-order eulerian godunov method for elastic-plastic flow in solids. J. Comput. Phys. 167, 1, 131–176.
    22. Murray, R. M., Sastry, S. S., and Zexiang, L. 1994. A Mathematical Introduction to Robotic Manipulation 1st Ed. CRC Press, Boca Raton, FL.
    23. Narain, R., Golas, A., and Lin, M. C. 2010. Free-flowing granular materials with two-way solid coupling. ACM Trans. Graph. 29, 173:1–173:10.
    24. Osher, S. and Fedkiw, R. 2002. Level set methods and dynamic implicit surfaces. In Applied Mathematical Sciences, vol. 153, Springer.
    25. Poludnenko, A. Y. and Khokhlov, A. M. 2007. Computation of fluid flows in non-inertial contracting, expanding, and rotating reference frames. J. Comput. Phys. 220, 2, 678–711.
    26. Premoze, S., Tasdizen, T., Bigler, J., Lefohn, A., and Whitaker, R. T. 2003. Particle-based simulation of fluids. Comput. Graph. Forum 22, 3, 401–410.
    27. Raveendran, K., Wojtan, C., and Turk, G. 2011. Hybrid smoothed particle hydrodynamics. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA’11). ACM Press, New York, 33–42.
    28. Shah, M., Cohen, J. M., Patel, S., Lee, P., and Pighin, F. 2004. Extended galilean invariance for adaptive fluid simulation. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA’04). Eurographics Association, 213–221.
    29. Stam, J. 1999. Stable fluids. In Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH’99). ACM Press/Addison-Wesley Publishing Co., New York, 121–128.
    30. Sueda, S., Jones, G. L., Levin, D. I. W., and Pai, D. K. 2011. Largescale dynamic simulation of highly constrained strands. ACM Trans. Graph. 30, 39:1–39:10.
    31. Sulsky, D., Chen, Z., and Schreyer, H. 1994. A particle method for history-dependent materials. Comput. Methods Appl. Mech. Engin. 118, 1–2, 179–196.
    32. Tran, L. B. and Udaykumar, H. S. 2004. A particle-level set-based sharp interface cartesian grid method for impact, penetration, and void collapse. J. Comput. Phys. 193, 2, 469–510.
    33. Trangenstein, J. 1994. A second-order godunov algorithm for two dimensional solid mechanics. Comput. Mech. 13, 5, 343–359.
    34. Wang, B., Faure, F., and Pai, D. K. 2012. Adaptive image-based intersection volume. ACM SIGGRAPH Trans. Graph. 31, 4.
    35. Wang, H., Mucha, P. J., and Turk, G. 2005. Water drops on surfaces. ACM Trans. Graph. 24, 3, 921–929.
    36. Wicke, M., Ritchie, D., Klingner, B. M., Burke, S., Shewchuk, J. R., and O’Brien, J. F. 2010. Dynamic local remeshing for elastoplastic simulation. ACM Trans. Graph. 29, 49:1–49:11.
    37. Wright, J. P. 1998. Numerical instability due to varying time steps in explicit wave propagation and mechanics calculations. J. Comput. Phys. 140, 2, 421–431.
    38. Zhu, Y. and Bridson, R. 2005. Animating sand as a fluid. ACM Trans. Graph. 24, 3, 965–972.

ACM Digital Library Publication:

Overview Page: