“Computational design of mechanical characters” by Coros, Thomaszewski, Noris, Sueda, Forberg, et al. …

  • ©Stelian Coros, Bernhard Thomaszewski, Shinjiro Sueda, Moira Forberg, Robert W. Sumner, Wojciech Matusik, and Bernd Bickel




    Computational design of mechanical characters

Session/Category Title:   Design & Authoring




    We present an interactive design system that allows non-expert users to create animated mechanical characters. Given an articulated character as input, the user iteratively creates an animation by sketching motion curves indicating how different parts of the character should move. For each motion curve, our framework creates an optimized mechanism that reproduces it as closely as possible. The resulting mechanisms are attached to the character and then connected to each other using gear trains, which are created in a semi-automated fashion. The mechanical assemblies generated with our system can be driven with a single input driver, such as a hand-operated crank or an electric motor, and they can be fabricated using rapid prototyping devices. We demonstrate the versatility of our approach by designing a wide range of mechanical characters, several of which we manufactured using 3D printing. While our pipeline is designed for characters driven by planar mechanisms, significant parts of it extend directly to non-planar mechanisms, allowing us to create characters with compelling 3D motions.


    1. Alt, H., and Godau, M. 1995. Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5, 01 & 02, 75–91.Google ScholarCross Ref
    2. Bächer, M., Bickel, B., James, D. L., and Pfister, H. 2012. Fabricating articulated characters from skinned meshes. In Proc. of ACM SIGGRAPH ’12.Google Scholar
    3. Bergou, M., Audoly, B., Vouga, E., Wardetzky, M., and Grinspun, E. 2010. Discrete viscous threads. In Proc. of ACM SIGGRAPH ’10. Google ScholarDigital Library
    4. Bickel, B., Bächer, M., Otaduy, M. A., Lee, H. R., Pfister, H., Gross, M., and Matusik, W. 2010. Design and fabrication of materials with desired deformation behavior. In Proc. of ACM SIGGRAPH ’10. Google ScholarDigital Library
    5. Bridson, R. 2007. Fast poisson disk sampling in arbitrary dimensions. In Proc. of ACM SIGGRAPH ’07. Google ScholarDigital Library
    6. Cabrera, J., Simon, A., and Prado, M. 2002. Optimal synthesis of mechanisms with genetic algorithms. Mechanism and machine theory 37, 10, 1165–1177.Google Scholar
    7. Calì, J., Calian, D., Amati, C., Kleinberger, R., Steed, A., Kautz, J., and Weyrich, T. 2012. 3D-printing of non-assembly, articulated models. In Proc. of ACM SIGGRAPH Asia ’12.Google Scholar
    8. Chiou, S., and Sridhar, K. 1999. Automated conceptual design of mechanisms. Mechanism and Machine Theory 34, 3, 467–495.Google ScholarCross Ref
    9. Demarsin, K., Vanderstraeten, D., Volodine, T., and Roose, D. 2007. Detection of closed sharp edges in point clouds using normal estimation and graph theory. Computer-Aided Design 39, 4, 276–283. Google ScholarDigital Library
    10. Dong, Y., Wang, J., Pellacini, F., Tong, X., and Guo, B. 2010. Fabricating spatially-varying subsurface scattering. In Proc. of ACM SIGGRAPH ’10. Google ScholarDigital Library
    11. Eiter, T., and Mannila, H. 1994. Computing discrete fréchet distance. Tech. Rep. CD-TR 94/64, Christian Doppler Labor für Expertensyteme, TU Wien.Google Scholar
    12. Eitz, M., Richter, R., Boubekeur, T., Hildebrand, K., and Alexa, M. 2012. Sketch-based shape retrieval. In Proc. of ACM SIGGRAPH ’12. Google ScholarDigital Library
    13. Freudenstein, F. 1954. Design of Four-link Mechanisms. Ph. D. Thesis, Columbia University, USA.Google Scholar
    14. Gui, J., and Mäntylä, M. 1994. Functional understanding of assembly modelling. Computer-Aided Design 26, 6, 435–451.Google ScholarCross Ref
    15. Hasan, M., Fuchs, M., Matusik, W., Pfister, H., and Rusinkiewicz, S. 2010. Physical reproduction of materials with specified subsurface scattering. In Proc. of ACM SIGGRAPH ’10. Google ScholarDigital Library
    16. Johnson, D., 2010. Sisyphus testing shoes. http://www.youtube.com/watch?v=Rh-4zSbmhFU (Accessed on April 8, 2013).Google Scholar
    17. Lau, M., Ohgawara, A., Mitani, J., and Igarashi, T. 2011. Converting 3D furniture models to fabricatable parts and connectors. In Proc. of ACM SIGGRAPH ’11. Google ScholarDigital Library
    18. Malzbender, T., Samadani, R., Scher, S., Crume, A., Dunn, D., and Davis, J. 2012. Printing reflectance functions. ACM Trans. Graph. 31, 3 (June), 20:1–20:11. Google ScholarDigital Library
    19. Marks, J., Andalman, B., Beardsley, P. A., Freeman, W., Gibson, S., Hodgins, J. K., Kang, T., Mirtich, B., Pfister, H., Ruml, W., Ryall, K., Seims, J., and Shieber, S. 1997. Design galleries: A general approach to setting parameters for computer graphics and animation. In Proc. of ACM SIGGRAPH ’97, 389–400. Google ScholarDigital Library
    20. Mitra, N. J., Yang, Y.-L., Yan, D.-M., Li, W., and Agrawala, M. 2010. Illustrating how mechanical assemblies work. In Proc. of ACM SIGGRAPH ’10. Google ScholarDigital Library
    21. Mori, Y., and Igarashi, T. 2007. Plushie: An interactive design system for plush toys. In Proc. of ACM SIGGRAPH ’07. Google ScholarDigital Library
    22. Nocedal, J., and Wright, S. J. 2006. Numerical Optimization. Springer.Google Scholar
    23. Peppe, R. 2002. Automata and Mechanical Toys. Crowood Press.Google Scholar
    24. Sclater, N., and Chironis, N. 2001. Mechanisms and mechanical devices sourcebook. McGraw-Hill.Google Scholar
    25. Selman, B., Kautz, H., Cohen, B., et al. 1993. Local search strategies for satisfiability testing. Cliques, coloring, and satisfiability: Second DIMACS implementation challenge 26, 521–532.Google Scholar
    26. Stava, O., Vanek, J., Benes, B., Carr, N., and Měch, R. 2012. Stress relief: improving structural strength of 3d printable objects. In Proc. of ACM SIGGRAPH ’12. Google ScholarDigital Library
    27. Subramanian, D., and Wang, C. 1995. Kinematic synthesis with configuration spaces. Research in Engineering Design 7, 3, 193–213.Google ScholarCross Ref
    28. Umetani, N., Igarashi, T., and Mitra, N. J. 2012. Guided exploration of physically valid shapes for furniture design. In Proc. of ACM SIGGRAPH ’12. Google ScholarDigital Library
    29. Wesley, M., Lozano-Perez, T., Lieberman, L., Lavin, M., and Grossman, D. 1980. A geometric modeling system for automated mechanical assembly. IBM Journal of Research and Development 24, 1, 64–74. Google ScholarDigital Library
    30. Weyrich, T., Peers, P., Matusik, W., and Rusinkiewicz, S. 2009. Fabricating microgeometry for custom surface reflectance. In Proc. of ACM SIGGRAPH ’09. Google ScholarDigital Library
    31. Xing, E., Ng, A., Jordan, M., and Russell, S. 2002. Distance metric learning, with application to clustering with side-information. Advances in neural information processing systems 15, 505–512.Google Scholar
    32. Yao, Y., and Yan, H. 2003. A new method for torque balancing of planar linkages using non-circular gears. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 217, 5, 495–503.Google ScholarCross Ref
    33. Zhu, L., Xu, W., Snyder, J., Liu, Y., Wang, G., and Guo, B. 2012. Motion-guided mechanical toy modeling. In Proc. of ACM SIGGRAPH Asia ’12. Google ScholarDigital Library

ACM Digital Library Publication:

Overview Page: