“Computational design of nanostructural color for additive manufacturing” by Auzinger, Heidrich and Bickel

  • ©Thomas Auzinger, Wolfgang Heidrich, and Bernd Bickel

Conference:


Type:


Entry Number: 159

Title:

    Computational design of nanostructural color for additive manufacturing

Session/Category Title: Fabrication for Color and Motion


Presenter(s)/Author(s):


Moderator(s):



Abstract:


    Additive manufacturing has recently seen drastic improvements in resolution, making it now possible to fabricate features at scales of hundreds or even dozens of nanometers, which previously required very expensive lithographic methods. As a result, additive manufacturing now seems poised for optical applications, including those relevant to computer graphics, such as material design, as well as display and imaging applications.In this work, we explore the use of additive manufacturing for generating structural colors, where the structures are designed using a fabrication-aware optimization process. This requires a combination of full-wave simulation, a feasible parameterization of the design space, and a tailored optimization procedure. Many of these components should be re-usable for the design of other optical structures at this scale.We show initial results of material samples fabricated based on our designs. While these suffer from the prototype character of state-of-the-art fabrication hardware, we believe they clearly demonstrate the potential of additive nanofabrication for structural colors and other graphics applications.

References:


    1. Carlos I. Aguirre, Edilso Reguera, and Andreas Stein. 2010. Colloidal Photonic Crystal Pigments with Low Angle Dependence. ACS Applied Materials & Interfaces 2, 11 (nov 2010), 3257–3262.Google ScholarCross Ref
    2. Jacob Andkjær, Villads Egede Johansen, Kasper Storgaard Friis, and Ole Sigmund. 2013. Inverse design of nanostructured surfaces for color effects. Journal of the Optical Society of America B 31, 1 (dec 2013), 164.Google Scholar
    3. Vahid Babaei, Kiril Vidimče, Michael Foshey, Alexandre Kaspar, Piotr Didyk, and Wojciech Matusik. 2017. Color contoning for 3D printing. ACM Transactions on Graphics 36, 4 (jul 2017), 1–15. Google ScholarDigital Library
    4. Anton A. Bauhofer, Sebastian Krödel, Jan Rys, Osama R. Bilal, Andrei Constantinescu, and Chiara Daraio. 2017. Harnessing Photochemical Shrinkage in Direct Laser Writing for Shape Morphing of Polymer Sheets. Advanced Materials 29, 42 (sep 2017), 1703024.Google Scholar
    5. Fermín S. V. Bazán. 2000. Conditioning of Rectangular Vandermonde Matrices with Nodes in the Unit Disk. SIAM J. Matrix Anal. Appl. 21, 2 (jan 2000), 679–693. Google ScholarDigital Library
    6. Laurent Belcour and Pascal Barla. 2017. A practical extension to microfacet theory for the modeling of varying iridescence. ACM Transactions on Graphics 36, 4 (jul 2017), 1–14. Google ScholarDigital Library
    7. Jean-Pierre Berenger. 1994. A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys. 114, 2 (oct 1994), 185–200. Google ScholarDigital Library
    8. Amit H. Bermano, Thomas Funkhouser, and Szymon Rusinkiewicz. 2017. State of the Art in Methods and Representations for Fabrication-Aware Design. Computer Graphics Forum 36, 2 (may 2017), 509–535. Google ScholarDigital Library
    9. Alan Brunton, Can Ates Arikan, and Philipp Urban. 2015. Pushing the Limits of 3D Color Printing: Error Diffusion with Translucent Materials. ACM Transactions on Graphics 35, 1 (dec 2015), 1–13. Google ScholarDigital Library
    10. Ian B. Burgess, Marko Lončar, and Joanna Aizenberg. 2013. Structural colour in colourimetric sensors and indicators. Journal of Materials Chemistry C 1, 38 (2013), 6075.Google ScholarCross Ref
    11. Richard H. Byrd, Peihuang Lu, Jorge Nocedal, and Ciyou Zhu. 1995. A Limited Memory Algorithm for Bound Constrained Optimization. SIAM Journal on Scientific Computing 16, 5 (sep 1995), 1190–1208. Google ScholarDigital Library
    12. Jennefir Digaum. 2016. Fabrication and Characterization of Spatially-Variant Self-Collimating Photonic Crystals. phdthesis. University of Central Florida. http://purl.fcla.edu/fcla/etd/CFE0006527Google Scholar
    13. Yue Dong, Jiaping Wang, Fabio Pellacini, Xin Tong, and Baining Guo. 2010. Fabricating spatially-varying subsurface scattering. ACM Transactions on Graphics 29, 4 (jul 2010), 1. Google ScholarDigital Library
    14. Oskar Elek, Denis Sumin, Ran Zhang, Tim Weyrich, Karol Myszkowski, Bernd Bickel, Alexander Wilkie, and Jaroslav Křivánek. 2017. Scattering-aware texture reproduction for 3D printing. ACM Transactions on Graphics 36, 6 (nov 2017), 1–15. Google ScholarDigital Library
    15. Moritz Emons, Kotaro Obata, Thomas Binhammer, Aleksandr Ovsianikov, Boris N. Chichkov, and Uwe Morgner. 2012. Two-photon polymerization technique with sub-50 nm resolution by sub-10 fs laser pulses. Optical Materials Express 2, 7 (jun 2012), 942.Google ScholarCross Ref
    16. Grant T England and Joanna Aizenberg. 2017. Emerging optical properties from the combination of simple optical effects. Reports on Progress in Physics 81, 1 (nov 2017), 016402.Google Scholar
    17. A. Farjadpour, David Roundy, Alejandro Rodriguez, M. Ibanescu, Peter Bermel, J. D. Joannopoulos, Steven G.Johnson, and G. W. Burr. 2006. Improving accuracy by subpixel smoothing in the finite-difference time domain. Optics Letters 31, 20 (sep 2006), 2972.Google ScholarCross Ref
    18. Yulan Fu, Cary A. Tippets, Eugenii U. Donev, and Rene Lopez. 2016. Structural colors: from natural to artificial systems. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology 8, 5 (mar 2016), 758–775.Google ScholarCross Ref
    19. Henning Galinski, Gael Favraud, Hao Dong, Juan S Totero Gongora, Grégory Favaro, Max Döbeli, Ralph Spolenak, Andrea Fratalocchi, and Federico Capasso. 2016. Scalable, ultra-resistant structural colors based on network metamaterials. Light: Science & Applications 6, 5 (sep 2016), e16233.Google Scholar
    20. Helen Ghiradella. 1991. Light and color on the wing: structural colors in butterflies and moths. Applied Optics 30, 24 (aug 1991), 3492.Google ScholarCross Ref
    21. Walton C. Gibson. 2014. The Method of Moments in Electromagnetics (2 ed.). Chapman and Hall/CRC, Boca Raton, FL.Google Scholar
    22. Ming Gu and Stanley C. Eisenstat. 1996. Efficient Algorithms for Computing a Strong Rank-Revealing QR Factorization. SIAM Journal on Scientific Computing 17, 4 (jul 1996), 848–869. Google ScholarDigital Library
    23. X. Wendy Gu and Julia. R. Greer. 2015. Ultra-strong architected Cu meso-lattices. Extreme Mechanics Letters 2 (mar 2015), 7–14.Google Scholar
    24. M G Guney and G K Fedder. 2016. Estimation of line dimensions in 3D direct laser writing lithography. Journal of Micromechanics and Microengineering 26, 105011 (sep 2016), 10.Google ScholarCross Ref
    25. Miloš Hašan, Martin Fuchs, Wojciech Matusik, Hanspeter Pfister, and Szymon Rusinkiewicz. 2010. Physical reproduction of materials with specified subsurface scattering. ACM Transactions on Graphics 29, 4 (jul 2010), 1. Google ScholarDigital Library
    26. Nicolas Holzschuch and Romain Pacanowski. 2017. A two-scale microfacet reflectance model combining reflection and diffraction. ACM Transactions on Graphics 36, 4 (jul 2017), 1–12. Google ScholarDigital Library
    27. Chia Wei Hsu, Owen D. Miller, Steven G. Johnson, and Marin Soljačić. 2015. Optimization of sharp and viewing-angle-independent structural color. Optics Express 23, 7 (apr 2015), 9516.Google ScholarCross Ref
    28. Matthias B. Hullin, Ivo Ihrke, Wolfgang Heidrich, Tim Weyrich, Gerwin Damberg, and Martin Fuchs. 2013. Computational Fabrication and Display of Material Appearance. In Eurographics 2013 – State of the Art Reports, M. Sbert and L. Szirmay-Kalos (Eds.). The Eurographics Association, 1–17.Google Scholar
    29. Jian-Ming Jin. 2014. The Finite Element Method in Electromagnetics (3 ed.). John Wiley & Sons, New York. Google ScholarDigital Library
    30. Villads Egede Johansen. 2014. Optical role of randomness for structured surfaces. Applied Optics 53, 11 (apr 2014), 2405.Google ScholarCross Ref
    31. Villads Egede Johansen, Jacob Andkjær, and Ole Sigmund. 2014. Design of structurally colored surfaces based on scalar diffraction theory. Journal of the Optical Society of America B 31, 2 (jan 2014), 207.Google ScholarCross Ref
    32. Villads Egede Johansen, Lasse Højlund Thamdrup, Kristian Smistrup, Theodor Nielsen, Ole Sigmund, and Peter Vukusic. 2015. Designing visual appearance using a structured surface. Optica 2, 3 (mar 2015), 239.Google ScholarCross Ref
    33. Steven G. Johnson, M. Ibanescu, M. A. Skorobogatiy, O. Weisberg, J. D. Joannopoulos, and Y. Fink. 2002. Perturbation theory for Maxwell’s equations with shifting material boundaries. Physical Review E 65, 6 (jun 2002), 7.Google ScholarCross Ref
    34. Eric Jones, Travis Oliphant, Pearu Peterson, et al. 2001–. SciPy: Open source scientific tools for Python. (2001–). http://www.scipy.org/ {Online; accessed 01.01.2018}.Google Scholar
    35. S Kinoshita, S Yoshioka, and J Miyazaki. 2008. Physics of structural colors. Reports on Progress in Physics 71, 7 (jun 2008), 076401.Google ScholarCross Ref
    36. Karthik Kumar, Huigao Duan, Ravi S. Hegde, Samuel C. W. Koh, Jennifer N. Wei, and Joel K. W. Yang. 2012. Printing colour at the optical diffraction limit. Nature Nanotechnology 7, 9 (aug 2012), 557–561.Google ScholarCross Ref
    37. Yanxiang Lan, Yue Dong, Fabio Pellacini, and Xin Tong. 2013. Bi-scale appearance fabrication. ACM Transactions on Graphics 32, 4 (jul 2013), 1. Google ScholarDigital Library
    38. Hye Soo Lee, Tae Soup Shim, Hyerim Hwang, Seung-Man Yang, and Shin-Hyun Kim. 2013. Colloidal Photonic Crystals toward Structural Color Palettes for Security Materials. Chemistry of Materials 25, 13 (jun 2013), 2684–2690.Google ScholarCross Ref
    39. Anat Levin, Daniel Glasner, Ying Xiong, Frédo Durand, William Freeman, Wojciech Matusik, and Todd Zickler. 2013. Fabricating BRDFs at high spatial resolution using wave optics. ACM Transactions on Graphics 32, 4 (jul 2013), 1. Google ScholarDigital Library
    40. Jacques Louis Lions. 1971. Optimal Control of Systems Governed by Partial Differential Equations (1 ed.). Grundlehren der mathematischen Wissenschaften, Vol. 170. Springer-Verlag Berlin Heidelberg.Google Scholar
    41. Wojciech Matusik, Boris Ajdin, Jinwei Gu, Jason Lawrence, Hendrik P. A. Lensch, Fabio Pellacini, and Szymon Rusinkiewicz. 2009. Printing spatially-varying reflectance. ACM Transactions on Graphics 28, 5 (dec 2009), 1. Google ScholarDigital Library
    42. Mariana Medina-Sánchez, Lukas Schwarz, Anne K. Meyer, Franziska Hebenstreit, and Oliver G. Schmidt. 2015. Cellular Cargo Delivery: Toward Assisted Fertilization by Sperm-Carrying Micromotors. Nano Letters 16, 1 (dec 2015), 555–561.Google Scholar
    43. Lucas R. Meza, Alex J. Zelhofer, Nigel Clarke, Arturo J. Mateos, Dennis M. Kochmann, and Julia R. Greer. 2015. Resilient 3D hierarchical architected metamaterials. Proceedings of the National Academy of Sciences 112, 37 (sep 2015), 11502–11507.Google ScholarCross Ref
    44. Vygantas Mizeikis. 2014. Realization of Structural Color by Direct Laser Write Technique in Photoresist. Journal of Laser Micro/Nanoengineering 9, 1 (mar 2014), 42–45.Google ScholarCross Ref
    45. Michał Nawrot, Łukasz Zinkiewicz, Bartłomiej Włodarczyk, and Piotr Wasylczyk. 2013. Transmission phase gratings fabricated with direct laser writing as color filters in the visible. Optics Express 21, 26 (dec 2013), 31919.Google ScholarCross Ref
    46. Ardavan F. Oskooi, David Roundy, Mihai Ibanescu, Peter Bermel, J.D. Joannopoulos, and Steven G. Johnson. 2010. Meep: A flexible free-software package for electromagnetic simulations by the FDTD method. Computer Physics Communications 181, 3 (mar 2010), 687–702.Google ScholarCross Ref
    47. Yoh-Han Pao and P. M. Rentzepis. 1965. Laser-Induced Production of Free Radicals in Organic Compounds. Applied Physics Letters 6, 5 (mar 1965), 93–95.Google ScholarCross Ref
    48. Marios Papas, Christian Regg, Wojciech Jarosz, Bernd Bickel, Philip Jackson, Wojciech Matusik, Steve Marschner, and Markus Gross. 2013. Fabricating translucent materials using continuous pigment mixtures. ACM Transactions on Graphics 32, 4 (jul 2013), 1. Google ScholarDigital Library
    49. Chul-Soon Park, Vivek Raj Shrestha, Sang-Shin Lee, and Duk-Yong Choi. 2016. Trans-Reflective Color Filters Based on a Phase Compensated Etalon Enabling Adjustable Color Saturation. Scientific Reports 6, 1 (may 2016), 10.Google Scholar
    50. Thiago Pereira, Carolina L. A. Paes Lerne, Steve Marschner, and Szymon Rusinkiewicz. 2017. Printing anisotropic appearance with magnetic flakes. ACM Transactions on Graphics 36, 4 (jul 2017), 1–10. Google ScholarDigital Library
    51. Andrew D. Pris, Yogen Utturkar, Cheryl Surman, William G. Morris, Alexey Vert, Sergiy Zalyubovskiy, Tao Deng, Helen T Ghiradella, and Radislav A. Potyrailo. 2012. Towards high-speed imaging of infrared photons with bio-inspired nano architectures. Nature Photonics 6, 3 (feb 2012), 195–200.Google ScholarCross Ref
    52. Manuela T Raimondi, Shane M. Eaton, Michele M. Nava, Matteo Laganà, Giulio Cerullo, and Roberto Osellame. 2012. Two-photon laser polymerization: from fundamentals to biomedical application in tissue engineering and regenerative medicine. Journal of Applied Biomaterials & Functional Materials 10, 1 (2012), 56–66.Google ScholarCross Ref
    53. Louis B. Rall. 1981. Automatic Differentiation: Techniques and Applications. Lecture Notes in Computer Science, Vol. 120. Springer-Verlag Berlin HeidelbergGoogle ScholarCross Ref
    54. Bahaa E. A. Saleh and Malvin Carl Teich. 2001. Fundamentals of Photonics. John Wiley & Sons, Inc.Google Scholar
    55. Osamu Sato, Shoichi Kubo, and Zhong-Ze Gu. 2009. Structural Color Films with Lotus Effects, Superhydrophilicity, and Tunable Stop-Bands. Accounts of Chemical Research 42, 1 (jan 2009), 1–10.Google ScholarCross Ref
    56. Tom D. Schultz and Ola M. Fincke. 2009. Structural colours create a flashing cue for sexual recognition and male quality in a Neotropical giant damselfly. Functional Ecology 23, 4 (aug 2009), 724–732.Google ScholarCross Ref
    57. Bokwang Song, Villads Egede Johansen, Ole Sigmund, and Jung H. Shin. 2017. Reproducing the hierarchy of disorder for Morpho-inspired, broad-angle color reflection. Scientific Reports 7 (apr 2017), 46023.Google Scholar
    58. Allen Taflove and Susan C Hagness. 2005. Computational electrodynamics: the finite-difference time-domain method (3rd ed.). Artech House.Google Scholar
    59. Stéfan van der Walt, S Chris Colbert, and Gaël Varoquaux. 2011. The NumPy Array: A Structure for Efficient Numerical Computation. Computing in Science & Engineering 13, 2 (mar 2011), 22–30. Google ScholarDigital Library
    60. Emma Vargo. 2017. Finding nanostructures that reproduce colors with adaptive mesh search techniques. Journal of the Optical Society of America B 34, 10 (sep 2017), 2250.Google ScholarCross Ref
    61. Mark Jayson Villangca, Darwin Palima, Andrew Rafael Bahas, and Jesper Glückstad. 2016. Light-driven micro-tool equipped with a syringe function. Light: Science & Applications 5, 9 (apr 2016), e16148–e16148.Google ScholarCross Ref
    62. Pete Vukusic and J. Roy Sambles. 2003. Photonic structures in biology. Nature 424, 6950 (aug 2003), 852–855.Google ScholarCross Ref
    63. Sebastian Werner, Zdravko Velinov, Wenzel Jakob, and Matthias B. Hullin. 2017. Scratch iridescence. ACM Transactions on Graphics 36, 6 (nov 2017), 1–14.Google ScholarDigital Library
    64. Tim Weyrich, Pieter Peers, Wojciech Matusik, and Szymon Rusinkiewicz. 2009. Fabricating microgeometry for custom surface reflectance. ACM Transactions on Graphics 28, 3 (jul 2009), 1. Google ScholarDigital Library
    65. W. Wickler. 1965. Mimicry and the Evolution of Animal Communication. Nature 208, 5010 (nov 1965), 519–521.Google ScholarCross Ref
    66. Wilhelm Wirtinger. 1927. Zur formalen Theorie der Funktionen von mehr komplexen Veränderlichen. Math. Ann. 97, 1 (dec 1927), 357–375.Google ScholarCross Ref
    67. Richard Wollhofen, Julia Katzmann, Calin Hrelescu, Jaroslaw Jacak, and Thomas A. Klar. 2013. 120 nm resolution and 55 nm structure size in STED-lithography. Optics Express 21, 9 (apr 2013), 10831.Google ScholarCross Ref
    68. Jun Wu, Niels Aage, Sylvain Lefebvre, and Charlie Wang. 2017. Topology Optimization for Computational Fabrication. In Eurographics 2017 – Tutorials, Adrien Bousseau and Diego Gutierrez (Eds.). The Eurographics AssociationGoogle Scholar
    69. Zhengmei Yang, Yanming Zhou, Yiqin Chen, Yasi Wang, Peng Dai, Zhaogang Zhang, and Huigao Duan. 2016. Reflective Color Filters and Monolithic Color Printing Based on Asymmetric Fabry-Perot Cavities Using Nickel as a Broadband Absorber. Advanced Optical Materials 4, 8 (may 2016), 1196–1202.Google ScholarCross Ref
    70. Guilian Yi and Byeng D. Youn. 2016. A comprehensive survey on topology optimization of phononic crystals. Structural and Multidisciplinary Optimization 54, 5 (jun 2016), 1315–1344. Google ScholarDigital Library
    71. Gordon Zyla, Alexander Kovalev, Evgeny L. Gurevich, Cemal Esen, Andreas Ostendorf, and Stanislav Gorb. 2018. Printing structural colors via direct laser writing. In Advanced Fabrication Technologies for Micro/Nano Optics and Photonics XI, Georg von Freymann, Winston V. Schoenfeld, and Raymond C. Rumpf (Eds.), Vol. 10544. SPIE, 9.Google Scholar


ACM Digital Library Publication: