“CATRA: interactive measuring and modeling of cataracts” by Pamplona, Passos, Zizka, Oliveira, Lawson, et al. …

  • ©Vitor F. Pamplona, Erick B. Passos, Jan Zizka, Manuel M. Oliveira, Everett Lawson, Esteban Clua, and Ramesh Raskar

Conference:


Type(s):


Title:

    CATRA: interactive measuring and modeling of cataracts

Presenter(s)/Author(s):



Abstract:


    We introduce an interactive method to assess cataracts in the human eye by crafting an optical solution that measures the perceptual impact of forward scattering on the foveal region. Current solutions rely on highly-trained clinicians to check the back scattering in the crystallin lens and test their predictions on visual acuity tests. Close-range parallax barriers create collimated beams of light to scan through sub-apertures, scattering light as it strikes a cataract. User feedback generates maps for opacity, attenuation, contrast and sub-aperture point-spread functions. The goal is to allow a general audience to operate a portable high-contrast light-field display to gain a meaningful understanding of their own visual conditions. User evaluations and validation with modified camera optics are performed. Compiled data is used to reconstruct the individual’s cataract-affected view, offering a novel approach for capturing information for screening, diagnostic, and clinical analysis.

References:


    1. Ansari, R. R., Datiles, M. B., and King, J. F. 2000. A new clinical instrument for the early detection of cataract using dynamic light scattering and corneal topography. SPIE Ophthalmic technologies X 3908, 38–49.Google Scholar
    2. Asbell, P. A., Dualan, I., Mindel, J., Brocks, D., Ahmad, M., and Epstein, S. 2005. Age-related cataract. The Lancet 365 (9459), 599–609.Google ScholarCross Ref
    3. Barsky, B. A. 2004. Vision-realistic rendering: simulation of the scanned foveal image from wavefront data of human subjects. In APGV 2004, 73–81. Google ScholarDigital Library
    4. Camp, J., Maguire, L., and Robb, R. 1990. An efficient ray tracing algorithm for modeling visual performance from corneal topography. In Vis. Biomed. Comp., 278–285.Google Scholar
    5. Camparini, M., Macaluso, C., Reggiani, L., and Maraini, G. 2000. Retroillumination vesus reflected-light images in the photographic assessment of posterior capsule opacification. Invest. Ophthalmol. Vis. Sci 41, 10, 3074–3079.Google Scholar
    6. Datiles, M. B., Ansari, R. R., Suh, K. I., Vitale, S., Reed, G. F., Jr, J. S. Z., and Ferris, F. L. 2008. Clinical detection of precataractous lens protein changes using dynamic light scatterin. Arch. Ophthalmol. 126(12), 1687–1693.Google ScholarCross Ref
    7. de Wit, G. C., Franssen, L., Coppens, J. E., and van den Berg, T. J. 2006. Simulating the straylight effect of cataracts. J. Cataract Refract Surg. 32, 294–300.Google ScholarCross Ref
    8. Deering, M. F. 2005. A photon accurate model of the human eye. In SIGGRAPH, vol. 24(3), 649–658. Google ScholarDigital Library
    9. Dodgson, N. 2009. Analysis of the viewing zone of multi-view autostereoscopic displays. In SPIE Stereoscopic Displays and Applications XIII, vol. 4660, 254265.Google Scholar
    10. Donnelly, W. J., Pesudovs, K., Marsack, J. D., Sarver, E. J., and Applegate, R. A. 2004. Quantifying scatter in shack-hartmann images to evaluate nuclear cataract. Journal of refractive surgery 20(5), S515–S522.Google ScholarCross Ref
    11. Fine, E. M., and Rubin, G. S. 1999. Effects of cataract and scotoma on visual acuity: A simulation study. Optometry and Vision Science 76(7), 468–473.Google ScholarCross Ref
    12. Fostera, P. J., Wong, T. Y., Machin, D., Johnson, G. J., and Seah, S. K. L. 2003. Risk factors for nuclear, cortical and posterior subcapsular cataracts in the chinese population of singapore. Br J Ophthalmol 87, 1112–1120.Google ScholarCross Ref
    13. Hara, T., Saito, H., and Kanade, T. 2009. Removal of glare caused by water droplets. In CVMP, 144–151. Google Scholar
    14. Hayashi, K., Hayashi, H., Nakao, F., and Hayashi, F. 1998. In vivo quantitative measurement of posterior capsule opacification after extracapsular cataract surgery. Am J Ophthalmol 125, 837–843.Google ScholarCross Ref
    15. Isono, H., Yasuda, M., and Sasazawa, H. 1993. Autostereo-scopic 3-D display using LCD-generated parallax barrier. Electr. and Comm. in Japan 76(7), 7784.Google Scholar
    16. Kakimoto, M., Tatsukawa, T., Mukai, Y., and Nishita, T. 2007. Interactive simulation of the human eye depth of field and its correction by spectacle lenses. Comp. Graph. Forum 26, 627–636.Google ScholarCross Ref
    17. Kim, S., and Bressler, N. M. 2009. Optical coherence tomography and cataract surgery. Curr Opin Ophthalmol 20, 46–51.Google ScholarCross Ref
    18. Kolb, C., Mitchell, D., and Hanrahan, P. 1995. A realistic camera model for computer graphics. In ACM SIGGRAPH, 317–324. Google Scholar
    19. Lasa, M., Datiles, M., Magno, V., and Mahurkar, A. 1995. Scheimpflug photography and postcataract surgery posterior capsule opacification. Ophthalmic Surg. 26, 110–113.Google Scholar
    20. Li, H., Lim, J. H., Liu, J., Mitchell, P., Tan, A. G., Wang, J. J., and Wong, T. Y. 2010. A computer-aided diagnosis system of nuclear cataract. IEEE Trans. Bio. Eng. 57(7), 1690–1698.Google ScholarCross Ref
    21. Liu, I., White, L., and LaCroix, A. 1989. The association of age-related macular degeneration and lens opacities in the aged. Am. J. of Public Health 79(6), 765–769.Google ScholarCross Ref
    22. Loos, J., Slusallek, P., and Seidel, H.-P. 1998. Using wavefront tracing for the visualization and optimization of progressive lenses. Comp. Graph. Forum 17, 255–265.Google ScholarCross Ref
    23. Machado, G. M., and Oliveira, M. M. 2010. Real-time temporal-coherent color contrast enhancement for dichromats. Comp. Graph. Forum 29, 3, 933–942. Google ScholarDigital Library
    24. Mostafawy, S., Kermani, O., and Lubatschowski, H. 1997. Virtual eye: Retinal image visualization of the human eye. IEEE CGA 17, 8–12. Google Scholar
    25. Nayar, S., Krishnan, G., Grossberg, M. D., and Raskar, R. 2006. Fast separation of direct and global components of a scene using high frequency illumination. ACM TOG 25(3), 935–944. Google ScholarDigital Library
    26. NIH-EDPRSG. 2004. Prevalence of cataract and pseu-dophakia/aphakia among adults in the united states. Arch Ophthalmol 122, 487–494.Google ScholarCross Ref
    27. Palanker, D. V., Blumenkranz, M. S., Andersen, D., Wiltberger, M., Marcellino, G., Gooding, P., Angeley, D., Schuele, G., Woodley, B., Simoneau, M., Friedman, N. J., Seibel, B., Batlle, J., Feliz, R., Talamo, J., and Culbertson, W. 2010. Femtosecond laser-assisted cataract surgery with integrated optical coherence tomography. Science Translational Medicine 2, 58, 58ra85.Google Scholar
    28. Pamplona, V. F., Oliveira, M. M., and Baranoski, G. 2009. Photorealistic models for pupil light reflex and iridal pattern deformation. ACM TOG 28(4), 106. Google ScholarDigital Library
    29. Pamplona, V. F., Mohan, A., Oliveira, M. M., and Raskar, R. 2010. Netra: interactive display for estimating refractive errors and focal range. ACM TOG 29(4), 77:1–77:8. Google Scholar
    30. Raskar, R., Agrawal, A., Wilson, C. A., and Veeraraghavan, A. 2008. Glare aware photography: 4d ray sampling for reducing glare effects of camera lenses. In ACM SIGGRAPH, 56:1–56:10. Google ScholarDigital Library
    31. Ritschel, T., Ihrke, M., Frisvad, J. R., Coppens, J., Myszkowski, K., and Seidel, H.-P. 2009. Temporal glare: Real-time dynamic simulation of the scattering in the human eye. Comp. Graph. Forum 28, 2, 183–192.Google ScholarCross Ref
    32. Schwiegerling, J. 2000. Theoretical limits to visual performance. Survey of ophthalmology 45, 2, 139–146.Google Scholar
    33. Talvala, E.-V., Adams, A., Horowitz, M., and Levoy, M. 2007. Veiling glare in high dynamic range imaging. ACM TOG 26(3). Google ScholarDigital Library
    34. WHO, 2005. State of the world’s sight: Vision 2020, the right to sight: 1999-2005.Google Scholar


ACM Digital Library Publication:



Overview Page: