“Wave‐Based Sound Propagation in Large Open Scenes Using an Equivalent-Source Formulation” by Mehra, Raghuvanshi, Antani, Chandak, Curtis, et al. …

  • ©Ravish Mehra, Nikunj Raghuvanshi, Lakulish Antani, Anish Chandak, Sean Curtis, and Dinesh Manocha

Conference:


Type:


Title:

    Wave‐Based Sound Propagation in Large Open Scenes Using an Equivalent-Source Formulation

Session/Category Title: Sounds & Solids


Presenter(s)/Author(s):


Moderator(s):



Abstract:


    We present a novel approach for wave-based sound propagation suitable for large, open spaces spanning hundreds of meters, with a small memory footprint. The scene is decomposed into disjoint rigid objects. The free-field acoustic behavior of each object is captured by a compact per-object transfer function relating the amplitudes of a set of incoming equivalent sources to outgoing equivalent sources. Pairwise acoustic interactions between objects are computed analytically to yield compact inter-object transfer functions. The global sound field accounting for all orders of interaction is computed using these transfer functions. The runtime system uses fast summation over the outgoing equivalent source amplitudes for all objects to auralize the sound field for a moving listener in real time. We demonstrate realistic acoustic effects such as diffraction, low-passed sound behind obstructions, focusing, scattering, high-order reflections, and echoes on a variety of scenes.

References:


    1. Abramowitz, M. and Stegun, I. 1964. Handbook of Mathematical Functions 5th Ed. Dover, New York.Google Scholar
    2. Allen, J. B. and Berkley, D. A. 1979. Image method for efficiently simulating small-room acoustics. J. Acoust. Soc. Amer. 65, 4, 943–950.Google ScholarCross Ref
    3. Antani, L., Chandak, A., Taylor, M., and Manocha, D. 2012. Direct-to-Indirect acoustic radiance transfer. IEEE Trans. Vis. Comput. Graph. 18, 2, 261–269. Google ScholarDigital Library
    4. Chadwick, J. N., An, S. S., and James, D. L. 2009. Harmonic shells: A practical nonlinear sound model for near-rigid thin shells. In Proceedings of the SIGGRAPH Asia Conference on Computer Graphics and Interactive Techniques. ACM Press, New York, 1–10. Google ScholarDigital Library
    5. Cheng, A. and Cheng, D. 2005. Heritage and early history of the boundary element method. Engin. Anal. Bound. Elements 29, 3, 268–302.Google ScholarCross Ref
    6. Doicu, A., Eremin, Y. A., and Wriedt, T. 2000. Acoustic and Electromagnetic Scattering Analysis Using Discrete Sources 1st Ed. Academic Press.Google Scholar
    7. Fairweather, G. 2003. The method of fundamental solutions for scattering and radiation problems. Engin. Anal. Bound. Elements 27, 7, 759–769.Google ScholarCross Ref
    8. Funkhouser, T., Carlbom, I., Elko, G., Pingali, G., Sondhi, M., and West, J. 1998. A beam tracing approach to acoustic modeling for interactive virtual environments. In Proceedings of the Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH’98). 21–32. Google ScholarDigital Library
    9. Gumerov, N. A. and Duraiswami, R. 2009. A broadband fast multipole accelerated boundary element method for the three dimensional Helmholtz equation. J. Acoust. Soc. Amer. I25, 1, 191–205.Google ScholarCross Ref
    10. Hobson, E. W. 1955. The Theory of Spherical and Ellipsoidal Harmonics. Cambridge University Press.Google Scholar
    11. James, D. L., Barbic, J., and Pai, D. K. 2006. Precomputed acoustic transfer: Output-Sensitive, accurate sound generation for geometrically complex vibration sources. In ACM SIGGRAPH Papers. ACM Press, New York, 987–995. Google ScholarDigital Library
    12. Krokstad, A., Strom, S., and Sorsdal, S. 1968. Calculating the acoustical room response by the use of a ray tracing technique. J. Sound Vibr. 8, 1, 118–125.Google ScholarCross Ref
    13. Kropp, W. and Svensson, P. U. 1995. Application of the time domain formulation of the method of equivalent sources to radiation and scattering problems. Acta Acustica United Acustica 81, 6, 528–543.Google Scholar
    14. Lentz, T., Schroder, D., Vorlander, M., and Assenmacher, I. 2007. Virtual reality system with integrated sound field simulation and reproduction. EURASIP J. Appl. Signal Process. 2007, 1, 187. Google ScholarDigital Library
    15. Liu, Q. H. 1997. The pstd algorithm: A time-domain method combining the pseudospectral technique and perfectly matched layers. J. Acoust. Soc. Amer. 101, 5, 3182.Google ScholarCross Ref
    16. Liu, Y., Shen, L., and Bapat, M. 2009. Development of the fast multipole boundary element method for acoustic wave problems. In Recent Advances in Boundary Element Methods, Springer, 287–303.Google Scholar
    17. Manocha, D., Calamia, P., Lin, M. C., Manocha, D., Savioja, L., and Tsingos, N. 2009. Interactive sound rendering. In ACM SIGGRAPH Courses. ACM Press, New York, 15:1–15:338. Google ScholarDigital Library
    18. Mehra, R., Raghuvanshi, N., Savioja, L., Lin, M. C., and Manocha, D. 2012. An efficient gpu-based time domain solver for the acoustic wave equation. Appl. Acoust. 73, 2, 83–94.Google ScholarCross Ref
    19. Ochmann, M. 1995. The source simulation technique for acoustic radiation problems. Acustica 81, 512–527.Google Scholar
    20. Ochmann, M. 1999. The full-field equations for acoustic radiation and scattering. J. Acoust. Soc. Amer. 105, 5, 2574–2584.Google ScholarCross Ref
    21. Pavic, G. 2006. A technique for the computation of sound radiation by vibrating bodies using multipole substitute sources. Acta Acustica United Acustica 92, 15, 112–126.Google Scholar
    22. Pierce, A. D. 1989. Acoustics: An Introduction to Its Physical Principles and Applications. Acoustical Society of America.Google Scholar
    23. Raghuvanshi, N., Narain, R., and Lin, M. C. 2009. Efficient and accurate sound propagation using adaptive rectangular decomposition. IEEE Trans. Vis. Comput. Graph. 15, 5, 789–801. Google ScholarDigital Library
    24. Raghuvanshi, N., Snyder, J., Mehra, R., Lin, M. C., and Govindaraju, N. K. 2010. Precomputed wave simulation for real-time sound propagation of dynamic sources in complex scenes. ACM Trans. Graph. 29, 3. Google ScholarDigital Library
    25. Sakamoto, S., Ushiyama, A., and Nagatomo, H. 2006. Numerical analysis of sound propagation in rooms using finite difference time domain method. J. Acoust. Soc. Amer. 120, 5, 3008.Google ScholarCross Ref
    26. Savioja, L. 2010. Real-Time 3D finite-difference time-domain simulation of mid-frequency room acoustics. In Proceedings of the 13th International Conference on Digital Audio Effects (DAFx’10).Google Scholar
    27. Siltanen, S., Lokki, T., Kiminki, S., and Savioja, L. 2007. The room acoustic rendering equation. J. Acoust. Soc. Amer. 122, 3, 1624–1635.Google ScholarCross Ref
    28. Siltanen, S., Lokki, T., and Savioja, L. 2009. Frequency domain acoustic radiance transfer for real-time auralization. Acta Acustica United Acustica 95, 1, 106–117.Google ScholarCross Ref
    29. Southern, A., Siltanen, S., and Savioja, L. 2011. Spatial room impulse responses with a hybrid modeling method. Audio Engin. Soc. Convent. 130.Google Scholar
    30. Svensson, U. P., Fred, R. I., and Vanderkooy, J. 1999. An analytic secondary source model of edge diffraction impulse responses. J. Acoust. Soc. Amer. 106, 2331–2344.Google ScholarCross Ref
    31. Taflove, A. and Hagness, S. C. 2005. Computational Electrodynamics: The Finite-Difference Time-Domain Method 3rd Ed. Artech House.Google Scholar
    32. Takala, T. and Hahn, J. 1992. Sound rendering. ACM Trans. Graph. 26, 2, 211–220. Google ScholarDigital Library
    33. Taraldsen, G. and Jonasson, H. 2011. Aspects of ground effect modeling. J. Acoust. Soc. Amer. 129, 1, 47–53.Google ScholarCross Ref
    34. Taylor, M. T., Chandak, A., Antani, L., and Manocha, D. 2009. RESound: Interactive sound rendering for dynamic virtual environments. In Proceedings of the ACM Conference on Multimedia (MM’09). ACM Press, New York, 271–280. Google ScholarDigital Library
    35. Thompson, L. L. 2006. A review of finite-element methods for time-harmonic acoustics. J. Acoust. Soc. Amer. 119, 3, 1315–1330.Google ScholarCross Ref
    36. Thompson, L. L. and Pinsky, P. M. 2004. Acoustics. John Wiley & Sons.Google Scholar
    37. Tsingos, N. 2009. Pre-Computing geometry-based reverberation effects for games. In Proceedings of the 35th AES Conference on Audio for Games.Google Scholar
    38. Tsingos, N., Dachsbacher, C., Lefebvre, S., and Dellepiane, M. 2007. Instant sound scattering. In Proceedings of the Eurographics Symposium on Rendering Techniques. Google ScholarDigital Library
    39. Tsingos, N., Funkhouser, T., Ngan, A., and Carlbom, I. 2001. Modeling acoustics in virtual environments using the uniform theory of diffraction. In Proceedings of the Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH’01). ACM Press, New York, 545–552. Google ScholarDigital Library
    40. Tsingos, N. and Gascuel, J. D. 1997. A general model for the simulation of room acoustics based on hierarchical radiosity. In Proceedings of the Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH’97). ACM Press, New York. Google ScholarDigital Library
    41. Vorlander, M. 1989. Simulation of the transient and steady-state sound propagation in rooms using a new combined ray-tracing/image-source algorithm. J. Acoust. Soc. Amer. 86, 1, 172–178.Google ScholarCross Ref
    42. Waterman, P. C. 2009. T-Matrix methods in acoustic scattering. J. Acoust. Soc. Amer. 125, 1, 42–51.Google ScholarCross Ref
    43. Yee, K. 1966. Numerical solution of initial boundary value problems involving maxwell’s equations in isotropic media. IEEE Trans. Antenn. Propag. 14, 3, 302–307.Google ScholarCross Ref
    44. Zheng, C. and James, D. L. 2010. Rigid-Body fracture sound with precomputed soundbanks. In ACM SIGGRAPH Papers. ACM Press, New York, 1–13. Google ScholarDigital Library
    45. Zienkiewicz, O. C., Taylor, R. L., and Nithiarasu, P. 2006. The Finite Element Method for Fluid Dynamics 6th Ed. Butterworth-Heinemann.Google Scholar

ACM Digital Library Publication: