“Visual knitting machine programming” by Narayanan, Wu, Yuksel and McCann

  • ©Vidya Narayanan, Kui Wu, Cem Yuksel, and James (Jaimy) McCann

Conference:


Type:


Title:

    Visual knitting machine programming

Session/Category Title: Textiles and Fabrication


Presenter(s)/Author(s):



Abstract:


    Industrial knitting machines are commonly used to manufacture complicated shapes from yarns; however, designing patterns for these machines requires extensive training. We present the first general visual programming interface for creating 3D objects with complex surface finishes on industrial knitting machines. At the core of our interface is a new, augmented, version of the stitch mesh data structure. The augmented stitch mesh stores low-level knitting operations per-face and encodes the dependencies between faces using directed edge labels. Our system can generate knittable augmented stitch meshes from 3D models, allows users to edit these meshes in a way that preserves their knittability, and can schedule the execution order and location of each face for production on a knitting machine. Our system is general, in that its knittability-preserving editing operations are sufficient to transform between any two machine-knittable stitch patterns with the same orientation on the same surface. We demonstrate the power and flexibility of our pipeline by using it to create and knit objects featuring a wide range of patterns and textures, including intarsia and Fair Isle colorwork; knit and purl textures; cable patterns; and laces.

References:


    1. Carlos Aliaga, Carlos Castillo, Diego Gutierrez, Miguel A. Otaduy, Jorge Lopez-Moreno, and Adrian Jarabo. 2017. An Appearance Model for Textile Fibers. Computer Graphics Forum 36, 4 (2017), 35–45. Google ScholarDigital Library
    2. Aric Bartle, Alla Sheffer, Vladimir G. Kim, Danny M. Kaufman, Nicholas Vining, and Floraine Berthouzoz. 2016. Physics-driven Pattern Adjustment for Direct 3D Garment Editing. ACM Trans. Graph. 35, 4 (Jul 2016), 1–11. Google ScholarDigital Library
    3. Sarah-Marie Belcastro. 2009. Every Topological Surface Can Be Knit: A Proof. Journal of Mathematics and the Arts 3, 2 (2009), 67–83.Google ScholarCross Ref
    4. Floraine Berthouzoz, Akash Garg, Danny M Kaufman, Eitan Grinspun, and Maneesh Agrawala. 2013. Parsing Sewing Patterns Into 3D Garments. ACM Trans. Graph. (TOG) 32, 4 (2013), 85. Google ScholarDigital Library
    5. Sofien Bouaziz, Sebastian Martin, Tiantian Liu, Ladislav Kavan, and Mark Pauly. 2014. Projective Dynamics: Fusing Constraint Projections for Fast Simulation. ACM Trans. Graph. 33, 4, Article 154 (July 2014), 11 pages. Google ScholarDigital Library
    6. Michel Carignan, Ying Yang, Nadia Magnenat Thalmann, and Daniel Thalmann. 1992. Dressing Animated Synthetic Actors With Complex Deformable Clothes. ACM SIGGRAPH’92 (1992), 99–104. Google ScholarDigital Library
    7. Yanyun Chen, S. Lin, Hua Zhong, Ying-Qing Xu, Baining Guo, and Heung-Yeung Shum. 2003. Realistic rendering and animation of knitwear. IEEE Transactions on Visualization and Computer Graphics 9, 1 (Jan 2003), 43–55. Google ScholarDigital Library
    8. Gabriel Cirio, Jorge Lopez-Moreno, David Miraut, and Miguel A. Otaduy. 2014. Yarn-level Simulation of Woven Cloth. ACM Trans. Graph. 33, 6, Article 207 (Nov. 2014), 11 pages. Google ScholarDigital Library
    9. Gabriel Cirio, Jorge Lopez-Moreno, and Miguel A. Otaduy. 2015. Efficient Simulation of Knitted Cloth Using Persistent Contacts. In Proceedings of the 14th ACM SIGGRAPH / Eurographics Symposium on Computer Animation (SCA ’15). ACM, 55–61. Google ScholarDigital Library
    10. G. Cirio, J. Lopez-Moreno, and M. A. Otaduy. 2017. Yarn-Level Cloth Simulation with Sliding Persistent Contacts. IEEE Transactions on Visualization and Computer Graphics 23, 2 (Feb 2017), 1152–1162. Google ScholarDigital Library
    11. Phillipe Decaudin, Dan Julius, Jamie Wither, Laurence Boissieux, Alla Sheffer, and Marie-Paule Cani. 2006. Virtual Garments: A Fully Geometric Approach for Clothing Design. CG Forum (Eurographics) 25, 3 (2006), 625–634.Google ScholarCross Ref
    12. Mario Deuss, Anders Holden Deleuran, Sofien Bouaziz, Bailin Deng, Daniel Piker, and Mark Pauly. 2015. ShapeOp—A Robust and Extensible Geometric Modelling Paradigm. Springer International Publishing, Cham, 505–515.Google Scholar
    13. Shen Dong, Scott Kircher, and Michael Garland. 2005. Harmonic Functions for Quadrilateral Remeshing of Arbitrary Manifolds. Computer Aided Geometric Design 22, 5 (2005), 392–423. Google ScholarDigital Library
    14. Ashim Garg and Roberto Tamassia. 2001. On the Computational Complexity of Upward and Rectilinear Planarity Testing. SIAM J. Comput. 31, 2 (2001), 601–625. Google ScholarDigital Library
    15. E. Groller, R. T. Rau, and W. Strasser. 1995. Modeling and visualization of knitwear. IEEE Transactions on Visualization and Computer Graphics 1, 4 (Dec 1995), 302–310. Google ScholarDigital Library
    16. Eduard Gröller, René T Rau, and Wolfgang Straßer. 1996. Modeling Textiles as Three Dimensional Textures. In Rendering Techniques’ 96. Springer, 205–214. Google ScholarDigital Library
    17. Donald House and David Breen. 2000. Cloth modeling and animation. AK Peters/CRC Press. Google ScholarDigital Library
    18. Yuki Igarashi, Takeo Igarashi, and Hiromasa Suzuki. 2008a. Knitting a 3D Model. Computer Graphics Forum 27, 7, 1737–1743.Google ScholarCross Ref
    19. Yuki Igarashi, Takeo Igarashi, and Hiromasa Suzuki. 2008b. Knitty: 3D Modeling of Knitted Animals with a Production Assistant Interface. In Eurographics.Google Scholar
    20. Wenzel Jakob, Adam Arbree, Jonathan T. Moon, Kavita Bala, and Steve Marschner. 2010. A Radiative Transfer Framework for Rendering Materials with Anisotropic Structure. ACM Trans. Graph. 29, 4, Article 53 (2010), 13 pages. Google ScholarDigital Library
    21. Chenfanfu Jiang, Theodore Gast, and Joseph Teran. 2017. Anisotropic Elastoplasticity for Cloth, Knit and Hair Frictional Contact. ACM Trans. Graph. 36, 4, Article 152 (July 2017), 14 pages. Google ScholarDigital Library
    22. Jonathan M. Kaldor, Doug L. James, and Steve Marschner. 2008. Simulating Knitted Cloth at the Yarn Level. ACM Trans. Graph. (SIGGRAPH’08) 27, 3 (2008), 65. Google ScholarDigital Library
    23. Jonathan M. Kaldor, Doug L. James, and Steve Marschner. 2010. Efficient Yarn-based Cloth with Adaptive Contact Linearization. ACM Trans. Graph. (SIGGRAPH’10) 29, 4 (2010), 105. Google ScholarDigital Library
    24. Pramook Khungurn, Daniel Schroeder, Shuang Zhao, Kavita Bala, and Steve Marschner. 2015. Matching Real Fabrics with Micro-Appearance Models. ACM Trans. Graph. 35, 1, Article 1 (2015), 26 pages. Google ScholarDigital Library
    25. Chelsea Knittel, Diana Nicholas, Reva Street, Caroline Schauer, and Genevieve Dion. 2015. Self-Folding Textiles through Manipulation of Knit Stitch Architecture. Fibers 3, 4 (Dec 2015), 575–587.Google ScholarCross Ref
    26. Jonathan Leaf, Rundong Wu, Eston Schweickart, Doug L. James, and Steve Marschner. 2018. Interactive Design of Yarn-Level Cloth Patterns. ACM Trans. Graph. (Proceedings of SIGGRAPH Asia 2018) 37, 6 (11 2018). Google ScholarDigital Library
    27. Minchen Li, Alla Sheffer, Eitan Grinspun, and Nicholas Vining. 2018. FoldSketch: Enriching Garments with Physically Reproducible Folds. ACM Trans. Graph. 37, 4 (2018). Google ScholarDigital Library
    28. Jenny Lin, Vidya Narayanan, and James McCann. 2018. Efficient Transfer Planning for Flat Knitting. In Proceedings of the 2Nd ACM Symposium on Computational Fabrication (SCF ’18). ACM, New York, NY, USA, Article 1, 7 pages. Google ScholarDigital Library
    29. Jorge Lopez-Moreno, David Miraut, Gabriel Cirio, and Miguel A. Otaduy. 2015. Sparse GPU Voxelization of Yarn-Level Cloth. Computer Graphics Forum (2015), 1–13. Google ScholarDigital Library
    30. Fujun Luan, Shuang Zhao, and Kavita Bala. 2017. Fiber-Level On-the-Fly Procedural Textiles. In Computer Graphics Forum, Vol. 36. Wiley Online Library, 123–135. Google ScholarDigital Library
    31. James McCann. 2017. The “Knitout” (.k) File Format. {Online}. Available from: https://textiles-lab.github.io/knitout/knitout.html.Google Scholar
    32. James McCann, Lea Albaugh, Vidya Narayanan, April Grow, Wojciech Matusik, Jennifer Mankoff, and Jessica Hodgins. 2016. A Compiler for 3D Machine Knitting. ACM Trans. Graph. 35, 4, Article 49 (July 2016), 49:1–49:11 pages. Google ScholarDigital Library
    33. Michael Meißner and Bernd Eberhardt. 1998. The art of knitted fabrics, realistic & physically based modelling of knitted patterns. In Computer Graphics Forum, Vol. 17. Wiley Online Library, 355–362.Google Scholar
    34. Yuki Mori and Takeo Igarashi. 2007. Plushie: An Interactive Design System for Plush Toys. ACM Trans. Graph. (SIGGRAPH’07) 26, 3 (2007), 45. Google ScholarDigital Library
    35. Vidya Narayanan, Lea Albaugh, Jessica Hodgins, Stelian Coros, and James McCann. 2018. Automatic Machine Knitting of 3D Meshes. ACM Trans. Graph. 37, 3, Article 35 (Aug. 2018), 15 pages. Google ScholarDigital Library
    36. Jifei Ou, Daniel Oran, Don Derek Haddad, Joseph Paradiso, and Hiroshi Ishii. 2019. SensorKnit: Architecting Textile Sensors with Machine Knitting. 3D Printing and Additive Manufacturing 6, 1 (2019), 1–11.Google Scholar
    37. Chi-Han Peng and Peter Wonka. 2013. Connectivity Editing for Quad-dominant Meshes. In Proceedings of the Eleventh Eurographics/ACMSIGGRAPH Symposium on Geometry Processing (SGP ’13). Eurographics Association, 43–52. Google ScholarDigital Library
    38. Hannah Perner-Wilson, Leah Buechley, and Mika Satomi. 2011. Handcrafting Textile Interfaces from a Kit-of-no-parts. In Proceedings of the Fifth International Conference on Tangible, Embedded, and Embodied Interaction (TEI ’11). ACM, 61–68. Google ScholarDigital Library
    39. Mariana Popescu, Matthias Rippmann, Tom Van Mele, and Philippe Block. 2018. Automated Generation of Knit Patterns for Non-developable Surfaces. In Humanizing Digital Reality, De Rycke K. et al. (Ed.). Springer, Singapore.Google Scholar
    40. Kai Schröder, Shuang Zhao, and Arno Zinke. 2012. Recent Advances in Physically-based Appearance Modeling of Cloth. In SIGGRAPH Asia 2012 Courses (SA ’12). ACM, New York, NY, USA, Article 12, 52 pages. Google ScholarDigital Library
    41. Shima Seiki. 2011. SDS-ONE Apex3. {Online}. Available from: http://www.shimaseiki.com/product/design/sdsone_apex/flat/.Google Scholar
    42. Soft Byte Ltd. 1999. Designaknit. {Online}. Available from: https://www.softbyte.co.uk/designaknit.htm.Google Scholar
    43. David J Spencer. 2001. Knitting technology: a comprehensive handbook and practical guide. Vol. 16. CRC press.Google Scholar
    44. Stoll. 2011. M1Plus pattern software. {Online}. Available from: http://www.stoll.com/stoll_software_solutions_en_4/pattern_software_m1plus/3_1.Google Scholar
    45. Shinjiro Sueda, Garrett L. Jones, David I. W. Levin, and Dinesh K. Pai. 2011. Large-scale Dynamic Simulation of Highly Constrained Strands. In ACM SIGGRAPH 2011 Papers (SIGGRAPH ’11). ACM, New York, NY, USA, Article 39, 10 pages. Google ScholarDigital Library
    46. Emmanuel Turquin, Jamie Wither, Laurence Boissieux, Marie-Paule Cani, and John Hughes. 2007. A Sketch-based Interface for Clothing Virtual Characters. IEEE Comp. Graph. and Applications 27, 1 (2007), 72–81. Google ScholarDigital Library
    47. Nobuyuki Umetani, Danny M. Kaufman, Takeo Igarashi, and Eitan Grinspun. 2011. Sensitive Couture for Interactive Garment Editing and Modeling. ACM Trans. Graph. (SIGGRAPH’11) 30, 4 (2011), 90. Google ScholarDigital Library
    48. Jenny Underwood. 2009. The design of 3D shape knitted preforms. Ph.D. Dissertation. Fashion and Textiles, RMIT University.Google Scholar
    49. Pascal Volino and Nadia Magnenat-Thalmann. 2000. Virtual Clothing: Theory and Practice. Springer.Google ScholarCross Ref
    50. Pascal Volino, Nadia Magnenat-Thalmann, and Francois Faure. 2009. A Simple Approach to Nonlinear Tensile Stiffness for Accurate Cloth Simulation. ACM Trans. Graph. 28, 4 (2009), 105. Google ScholarDigital Library
    51. Hao Wang. 1961. Proving Theorems by Pattern Recognition II. Bell System Technical Journal 40 (1961), 1–42.Google ScholarCross Ref
    52. Huamin Wang. 2018. Rule-free Sewing Pattern Adjustment with Precision and Efficiency. ACM Trans. Graph. 37, 4, Article 53 (July 2018), 13 pages. Google ScholarDigital Library
    53. Tuanfeng Y. Wang, Duygu Ceylan, Jovan Popović, and Niloy J. Mitra. 2018. Learning a Shared Shape Space for Multimodal Garment Design. ACM Trans. Graph. 37, 6, Article 203, 13 pages. Google ScholarDigital Library
    54. Kui Wu, Xifeng Gao, Zachary Ferguson, Daniele Panozzo, and Cem Yuksel. 2018. Stitch Meshing. ACM Trans. Graph. (Proceedings of SIGGRAPH 2018) 37, 4, Article 130 (jul 2018), 14 pages. Google ScholarDigital Library
    55. Kui Wu, Hannah Swan, and Cem Yuksel. 2019. Knittable Stitch Meshes. ACM Trans. Graph. 38, 1, Article 10 (Jan. 2019), 13 pages. Google ScholarDigital Library
    56. Kui Wu and Cem Yuksel. 2017a. Real-time Cloth Rendering with Fiber-level Detail. IEEE Transactions on Visualization and Computer Graphics PP, 99 (2017), 1–1. Google ScholarDigital Library
    57. Kui Wu and Cem Yuksel. 2017b. Real-time Fiber-level Cloth Rendering. In ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games (I3D 2017). ACM, New York, NY, USA, 8. Google ScholarDigital Library
    58. Ying-Qing Xu, Yanyun Chen, Stephen Lin, Hua Zhong, Enhua Wu, Baining Guo, and Heung-Yeung Shum. 2001. Photorealistic Rendering of Knitwear Using the Lumislice. In Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH ’01). ACM, New York, NY, USA, 391–398. Google ScholarDigital Library
    59. Cem Yuksel, Jonathan M. Kaldor, Doug L. James, and Steve Marschner. 2012. Stitch Meshes for Modeling Knitted Clothing with Yarn-level Detail. ACM Trans. Graph. (Proceedings of SIGGRAPH 2012) 31, 3, Article 37 (2012), 12 pages. Google ScholarDigital Library
    60. Hao Zhang, Oliver Van Kaick, and Ramsay Dyer. 2010. Spectral Mesh Processing. In Computer graphics forum, Vol. 29. Wiley Online Library, 1865–1894.Google Scholar
    61. Shuang Zhao, Wenzel Jakob, Steve Marschner, and Kavita Bala. 2011. Building Volumetric Appearance Models of Fabric Using Micro CT Imaging. ACM Trans. Graph. 30, 4, Article 44 (2011), 10 pages. Google ScholarDigital Library
    62. Shuang Zhao, Fujun Luan, and Kavita Bala. 2016a. Fitting Procedural Yarn Models for Realistic Cloth Rendering. ACM Trans. Graph. 35, 4, Article 51 (2016), 11 pages. Google ScholarDigital Library
    63. Shuang Zhao, Lifan Wu, Frédo Durand, and Ravi Ramamoorthi. 2016b. Downsampling Scattering Parameters for Rendering Anisotropic Media. ACM Trans. Graph. 35, 6 (2016). Google ScholarDigital Library


ACM Digital Library Publication:



Overview Page: