“Unbiased and consistent rendering using biased estimators” by Misso, Bitterli, Georgiev and Jarosz

  • ©Zackary Misso, Benedikt Bitterli, Iliyan Georgiev, and Wojciech Jarosz

Conference:


Type:


Title:

    Unbiased and consistent rendering using biased estimators

Presenter(s)/Author(s):



Abstract:


    We introduce a general framework for transforming biased estimators into unbiased and consistent estimators for the same quantity. We show how several existing unbiased and consistent estimation strategies in rendering are special cases of this framework, and are part of a broader debiasing principle. We provide a recipe for constructing estimators using our generalized framework and demonstrate its applicability by developing novel unbiased forms of transmittance estimation, photon mapping, and finite differences.

References:


    1. Sai Praveen Bangaru, Tzu-Mao Li, and Frédo Durand. 2020. Unbiased Warped-Area Sampling for Differentiable Rendering. ACM Transactions on Graphics (Proceedings of SIGGRAPH Asia) 39, 6 (Nov. 2020), 245:1–245:18. Google ScholarCross Ref
    2. Benedikt Bitterli. 2016. Rendering resources. https://benedikt-bitterli.me/resources/.Google Scholar
    3. Benedikt Bitterli, Srinath Ravichandran, Thomas Müller, Magnus Wrenninge, Jan Novák, Steve Marschner, and Wojciech Jarosz. 2018. A Radiative Transfer Framework for Non-Exponential Media. ACM Transactions on Graphics (Proceedings of SIGGRAPH Asia) 37, 6 (Nov. 2018), 225:1–225:17. Google ScholarCross Ref
    4. Jose H. Blanchet, Nan Chen, and Peter W. Glynn. 2015. Unbiased Monte Carlo Computation of Smooth Functions of Expectations via Taylor Expansions. In 2015 Winter Simulation Conference (WSC). 360–367. Google ScholarCross Ref
    5. Jose H. Blanchet and Peter W. Glynn. 2015. Unbiased Monte Carlo for Optimization and Functions of Expectations via Multi-Level Randomization. In 2015 Winter Simulation Conference (WSC). 3656–3667. Google ScholarCross Ref
    6. T. E. Booth. 2007. Unbiased Monte Carlo Estimation of the Reciprocal of an Integral. Nuclear Science and Engineering 156, 3 (July 2007), 403–407. Google ScholarCross Ref
    7. Jérémi Dauchet, Jean-Jacques Bezian, Stéphane Blanco, Cyril Caliot, Julien Charon, Christophe Coustet, Mouna El Hafi, Vincent Eymet, Olivier Farges, Vincent Forest, Richard Fournier, Mathieu Galtier, Jacques Gautrais, Anaïs Khuong, Lionel Pelissier, Benjamin Piaud, Maxime Roger, Guillaume Terrée, and Sebastian Weitz. 2018. Addressing Nonlinearities in Monte Carlo. Scientific Reports 8, 1 (Dec. 2018), 13302. Google ScholarCross Ref
    8. Anthony B. Davis and Mark B. Mineev-Weinstein. 2011. Radiation Propagation in Random Media: From Positive to Negative Correlations in High-Frequency Fluctuations. Journal of Quantitative Spectroscopy and Radiative Transfer 112, 4 (March 2011), 632–645. Google ScholarCross Ref
    9. Iliyan Georgiev, Jaroslav Křivánek, Tomáš Davidovič, and Philipp Slusallek. 2012. Light Transport Simulation with Vertex Connection and Merging. ACM Transactions on Graphics (Proceedings of SIGGRAPH Asia) 31, 6 (Nov. 2012), 192:1–192:10. Google ScholarCross Ref
    10. Iliyan Georgiev, Zackary Misso, Toshiya Hachisuka, Derek Nowrouzezahrai, Jaroslav Křivánek, and Wojciech Jarosz. 2019. Integral Formulations of Volumetric Transmittance. ACM Transactions on Graphics (Proceedings of SIGGRAPH Asia) 38, 6 (Nov. 2019), 154:1–154:17. Google ScholarCross Ref
    11. Michael B. Giles. 2008. Multilevel Monte Carlo Path Simulation. Operations Research 56, 3 (June 2008), 607–617. Google ScholarCross Ref
    12. Toshiya Hachisuka, Wojciech Jarosz, and Henrik Wann Jensen. 2010. A Progressive Error Estimation Framework for Photon Density Estimation. ACM Transactions on Graphics (Proceedings of SIGGRAPH Asia) 29, 6 (Dec. 2010), 144:1–144:12. Google ScholarCross Ref
    13. Toshiya Hachisuka and Henrik Wann Jensen. 2009. Stochastic Progressive Photon Mapping. ACM Transactions on Graphics (Proceedings of SIGGRAPH Asia) 28, 5 (Dec. 2009), 130:1–130:8. Google ScholarCross Ref
    14. S. Heinrich. 1998. A Multilevel Version of the Method of Dependent Tests. In Proc. of the 3rd St. Petersburg Workshop on Simulation. St. Petersburg University Press, 31–35.Google Scholar
    15. Adrian Jarabo, Carlos Aliaga, and Diego Gutierrez. 2018. A Radiative Transfer Framework for Spatially-Correlated Materials. ACM Transactions on Graphics (Proceedings of SIGGRAPH) 37, 4 (July 2018), 83:1–83:13. Google ScholarCross Ref
    16. Wojciech Jarosz, Derek Nowrouzezahrai, Iman Sadeghi, and Henrik Wann Jensen. 2011a. A Comprehensive Theory of Volumetric Radiance Estimation Using Photon Points and Beams. ACM Transactions on Graphics 30, 1 (Jan. 2011), 5:1–5:19. Google ScholarCross Ref
    17. Wojciech Jarosz, Derek Nowrouzezahrai, Robert Thomas, Peter-Pike Sloan, and Matthias Zwicker. 2011b. Progressive Photon Beams. ACM Transactions on Graphics (Proceedings of SIGGRAPH Asia) 30, 6 (Dec. 2011), 181:1–181:12. Google ScholarCross Ref
    18. Henrik Wann Jensen. 2001. Realistic Image Synthesis Using Photon Mapping. AK Peters, Ltd., Natick, MA, USA.Google ScholarDigital Library
    19. Jiantao Jiao and Yanjun Han. 2020. Bias Correction with Jackknife, Bootstrap, and Taylor Series. IEEE Transactions on Information Theory 66, 7 (July 2020), 4392–4418. Google ScholarCross Ref
    20. Daniel Jonsson, Joel Kronander, Jonas Unger, Thomas B. Schon, and Magnus Wrenninge. 2020. Direct Transmittance Estimation in Heterogeneous Participating Media Using Approximated Taylor Expansions. IEEE Transactions on Visualization and Computer Graphics (2020), 1–1. Google ScholarCross Ref
    21. A. Keller. 2001. Hierarchical Monte Carlo Image Synthesis. Mathematics and Computers in Simulation 55, 1–3 (2001), 79–92.Google ScholarDigital Library
    22. Markus Kettunen, Eugene d’Eon, Jacopo Pantaleoni, and Jan Novak. 2021. An Unbiased Ray-Marching Transmittance Estimator. (Feb. 2021). arXiv:2102.10294 [cs.GR]Google Scholar
    23. Claude Knaus and Matthias Zwicker. 2011. Progressive Photon Mapping: A Probabilistic Approach. ACM Transactions on Graphics 30, 3 (May 2011), 25:1–25:13. Google ScholarCross Ref
    24. Peter Kutz, Ralf Habel, Yining Karl Li, and Jan Novák. 2017. Spectral and Decomposition Tracking for Rendering Heterogeneous Volumes. ACM Transactions on Graphics (Proceedings of SIGGRAPH) 36, 4 (July 2017), 111:1–111:16. Google ScholarCross Ref
    25. Don McLeish. 2011. A General Method for Debiasing a Monte Carlo Estimator. Monte Carlo Methods and Applications 17, 4 (Jan. 2011). Google ScholarCross Ref
    26. Zackary Misso, Benedikt Bitterli, Iliyan Georgiev, and Wojciech Jarosz. 2022. Unbiased and consistent rendering using biased estimators supplemental code and data. Google ScholarCross Ref
    27. Sarat Babu Moka, Dirk P. Kroese, and Sandeep Juneja. 2019. Unbiased Estimation of the Reciprocal Mean for Non-Negative Random Variables. In 2019 Winter Simulation Conference (WSC). 404–415. Google ScholarCross Ref
    28. Jan Novák, Andrew Selle, and Wojciech Jarosz. 2014. Residual Ratio Tracking for Estimating Attenuation in Participating Media. ACM Transactions on Graphics (Proceedings of SIGGRAPH Asia) 33, 6 (Nov. 2014), 179:1–179:11. Google ScholarCross Ref
    29. Adithya Pediredla, Yasin Karimi Chalmiani, Matteo Giuseppe Scopelliti, Maysamreza Chamanzar, Srinivasa Narasimhan, and Ioannis Gkioulekas. 2020. Path Tracing Estimators for Refractive Radiative Transfer. ACM Transactions on Graphics (Proceedings of SIGGRAPH Asia) 39, 6 (Nov. 2020), 241:1–241:15. Google ScholarCross Ref
    30. Matt Pharr, Wenzel Jakob, and Greg Humphreys. 2016. Physically Based Rendering: From Theory to Implementation (3rd ed.). Morgan Kaufmann, Cambridge, MA.Google ScholarDigital Library
    31. Hao Qin, Xin Sun, Qiming Hou, Baining Guo, and Kun Zhou. 2015. Unbiased Photon Gathering for Light Transport Simulation. ACM Transactions on Graphics 34, 6 (Oct. 2015). Google ScholarCross Ref
    32. Chang-han Rhee. 2013. Unbiased Estimation with Biased Samplers. Ph. D. Dissertation. Stanford University.Google Scholar
    33. Chang-han Rhee and Peter W. Glynn. 2012. A New Approach to Unbiased Estimation for SDE’s. (July 2012). arXiv:1207.2452 [q-fin.CP]Google Scholar
    34. Chang-Han Rhee and Peter W. Glynn. 2015. Unbiased Estimation with Square Root Convergence for SDE Models. Operations Research 63, 5 (Oct. 2015), 1026–1043. Google ScholarCross Ref
    35. Delio Vicini, Wenzel Jakob, and Anton Kaplanyan. 2021. A Non-Exponential Transmittance Model for Volumetric Scene Representations. ACM Transactions on Graphics (Proceedings of SIGGRAPH) 40, 4 (Aug. 2021), 136:1–136:16. Google ScholarCross Ref
    36. Jiří Vorba and Jaroslav Křivánek. 2016. Adjoint-Driven Russian Roulette and Splitting in Light Transport Simulation. ACM Transactions on Graphics (Proceedings of SIGGRAPH) 35, 4 (July 2016), 42:1–42:11. Google ScholarCross Ref
    37. Christopher S. Withers. 1987. Bias Reduction by Taylor Series. Communications in Statistics – Theory and Methods 16, 8 (Jan. 1987), 2369–2383. Google ScholarCross Ref
    38. Tizian Zeltner, Iliyan Georgiev, and Wenzel Jakob. 2020. Specular Manifold Sampling for Rendering High-Frequency Caustics and Glints. ACM Transactions on Graphics (Proceedings of SIGGRAPH) 39, 4 (July 2020). Google ScholarCross Ref


ACM Digital Library Publication: