“Tensor maps for synchronizing heterogeneous shape collections” by Huang, Liang, Wang, Zuo and Bajaj

  • ©Qixing Huang, Zhenxiao Liang, Haoyun Wang, Simiao Zuo, and Chandrajit Bajaj



Session Title:

    Maps and Operators


    Tensor maps for synchronizing heterogeneous shape collections



    Establishing high-quality correspondence maps between geometric shapes has been shown to be the fundamental problem in managing geometric shape collections. Prior work has focused on computing efficient maps between pairs of shapes, and has shown a quantifiable benefit of joint map synchronization, where a collection of shapes are used to improve (denoise) the pairwise maps for consistency and correctness. However, these existing map synchronization techniques place very strong assumptions on the input shapes collection such as all the input shapes fall into the same category and/or the majority of the input pairwise maps are correct. In this paper, we present a multiple map synchronization approach that takes a heterogeneous shape collection as input and simultaneously outputs consistent dense pairwise shape maps. We achieve our goal by using a novel tensor-based representation for map synchronization, which is efficient and robust than all prior matrix-based representations. We demonstrate the usefulness of this approach across a wide range of geometric shape datasets and the applications in shape clustering and shape co-segmentation.


    1. Animashree Anandkumar, Rong Ge, Daniel Hsu, Sham M. Kakade, and Matus Telgarsky. 2014. Tensor Decompositions for Learning Latent Variable Models. J. Mach. Learn. Res. 15, 1 (Jan. 2014), 2773–2832. http://dl.acm.org/citation.cfm?id=2627435.2697055 Google ScholarDigital Library
    2. Dragomir Anguelov, Praveen Srinivasan, Daphne Koller, Sebastian Thrun, Jim Rodgers, and James Davis. 2005. SCAPE: Shape Completion and Animation of People. ACM Trans. Graph. 24, 3 (July 2005), 408–416. Google ScholarDigital Library
    3. Federica Arrigoni, Beatrice Rossi, Pasqualina Fragneto, and Andrea Fusiello. 2018. Robust synchronization in SO(3) and SE(3) via low-rank and sparse matrix decomposition. Computer Vision and Image Understanding 174 (2018), 95 — 113.Google ScholarCross Ref
    4. Morteza Ashraphijuo and Xiaodong Wang. 2017. Fundamental conditions for low-CP-rank tensor completion. The Journal of Machine Learning Research 18, 1 (2017), 2116–2145. Google ScholarDigital Library
    5. Chandrajit Bajaj, Tingran Gao, Zihang He, Qixing Huang, and Zhenxiao Liang. 2018. SMAC: Simultaneous Mapping and Clustering Using Spectral Decompositions. In Proceedings of the 35th International Conference on Machine Learning (Proceedings of Machine Learning Research), Jennifer Dy and Andreas Krause (Eds.), Vol. 80. PMLR, Stockholmsmassan, Stockholm Sweden, 324–333. http://proceedings.mlr.press/v80/bajaj18a.htmlGoogle Scholar
    6. Mikhail Belkin and Partha Niyogi. 2001. Laplacian Eigenmaps and Spectral Techniques for Embedding and Clustering. In Proceedings of the 14th International Conference on Neural Information Processing Systems: Natural and Synthetic (NIPS’01). MIT Press, Cambridge, MA, USA, 585–591. http://dl.acm.org/citation.cfm?id=2980539.2980616 Google ScholarDigital Library
    7. P. Berkhin. 2006. A Survey of Clustering Data Mining Techniques. In Grouping Multidimensional Data: Recent Advances in Clustering, Jacob Kogan, Charles Nicholas, and Marc Teboulle (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 25–71.Google Scholar
    8. James C. Bezdek and Richard J. Hathaway. 2003. Convergence of alternating optimization. Neural, Parallel Sci. Comput. 11 (December 2003), 351–368. Issue 4. Google ScholarDigital Library
    9. Federica Bogo, Javier Romero, Matthew Loper, and Michael J. Black. 2014. FAUST: Dataset and Evaluation for 3D Mesh Registration. In 2014 IEEE Conference on Computer Vision and Pattern Recognition. IEEE Computer Society, Columbus, OH, USA, 3794–3801. Google ScholarDigital Library
    10. Doug M. Boyer, Yaron Lipman, Elizabeth St. Clair, Jesus Puente, Biren A. Patel, Thomas Funkhouser, Jukka Jernvall, and Ingrid Daubechies. 2011. Algorithms to automatically quantify the geometric similarity of anatomical surfaces. Proceedings of the National Academy of Sciences 108, 45 (2011), 18221–18226. arXiv:https://www.pnas.org/content/108/45/18221.full.pdfGoogle ScholarCross Ref
    11. Alexander Bronstein, Michael Bronstein, and Ron Kimmel. 2008. Numerical Geometry of Non-Rigid Shapes (1 ed.). Springer Publishing Company, Incorporated, New York City. Google ScholarDigital Library
    12. E. J. Candes, X. Li, Y. Ma, and J. Wright. 2011. Robust principal component analysis? Journal of the ACM (JACM) 58, 3 (2011), 11. Google ScholarDigital Library
    13. E. J. Candes, T. Strohmer, and V. Voroninski. 2012. PhaseLift: Exact and stable signal recovery from magnitude measurements via convex programming. Communications on Pure and Applied Mathematics 66 (august 2012), 1241–1274. Issue 8.Google Scholar
    14. Angel X. Chang, Thomas A. Funkhouser, Leonidas J. Guibas, Pat Hanrahan, Qi-Xing Huang, Zimo Li, Silvio Savarese, Manolis Savva, Shuran Song, Hao Su, Jianxiong Xiao, Li Yi, and Fisher Yu. 2015. ShapeNet: An Information-Rich 3D Model Repository. CoRR abs/1512.03012 (2015).Google Scholar
    15. Avishek Chatterjee and Venu Madhav Govindu. 2013. Efficient and Robust Large-Scale Rotation Averaging. In ICCV. IEEE Computer Society, Sydney, Australia, 521–528. Google ScholarDigital Library
    16. Yuxin Chen, Leonidas J. Guibas, and Qi-Xing Huang. 2014. Near-Optimal Joint Object Matching via Convex Relaxation. In Proceedings of the 31th International Conference on Machine Learning, ICML 2014, Beijing, China, 21–26 June 2014. JMLR, Inc., Beijing, China, 100–108. Google ScholarDigital Library
    17. Andrzej Cichocki, Danilo Mandic, Lieven De Lathauwer, Guoxu Zhou, Qibin Zhao, Cesar Caiafa, and Huy Anh Phan. 2015. Tensor decompositions for signal processing applications: From two-way to multiway component analysis. IEEE Signal Processing Magazine 32, 2 (2015), 145–163.Google ScholarCross Ref
    18. Luca Cosmo, Emanuele Rodolà, Andrea Albarelli, Facundo Mémoli, and Daniel Cremers. 2017. Consistent Partial Matching of Shape Collections via Sparse Modeling. Comput. Graph. Forum 36, 1 (2017), 209–221. Google ScholarDigital Library
    19. Lieven De Lathauwer, Josphine Castaing, and Jean-Franois Cardoso. 2007. Fourth-order cumulant-based blind identification of underdetermined mixtures. IEEE Transactions on Signal Processing 55, 6 (2007), 2965–2973. Google ScholarDigital Library
    20. Yuval Eldar, Michael Lindenbaum, Moshe Porat, and Yehoshua Y. Zeevi. 1997. The farthest point strategy for progressive image sampling. IEEE Trans. Image Processing 6, 9 (1997), 1305–1315. Google ScholarDigital Library
    21. Noa Fish, Oliver van Kaick, Amit Bermano, and Daniel Cohen-Or. 2016. Structure-oriented Networks of Shape Collections. ACM Trans. Graph. 35, 6, Article 171 (Nov. 2016), 14 pages. Google ScholarDigital Library
    22. Thomas Funkhouser, Michael Kazhdan, Philip Shilane, Patrick Min, William Kiefer, Ayellet Tal, Szymon Rusinkiewicz, and David Dobkin. 2004. Modeling by Example. ACM Trans. Graph. 23, 3 (Aug. 2004), 652–663. Google ScholarDigital Library
    23. Guojun Gan, Chaoqun Ma, and Jianhong Wu. 2007. Data Clustering: Theory, Algorithms, and Applications (ASA-SIAM Series on Statistics and Applied Probability). Society for Industrial and Applied Mathematics, Philadelphia, PA, USA. Google ScholarDigital Library
    24. Lin Gao, Yan-Pei Cao, Yu-Kun Lai, Hao-Zhi Huang, Leif Kobbelt, and Shi-Min Hu. 2015. Active Exploration of Large 3D Model Repositories. IEEE Trans. Vis. Comput. Graph. 21, 12 (2015), 1390–1402. Google ScholarDigital Library
    25. Daniela Giorgi, Silvia Biasotti, and Laura Paraboschi. 2007. Shape retrieval contest 2007: Watertight models track. SHREC competition 8, 7 (2007).Google Scholar
    26. Aleksey Golovinskiy and Thomas Funkhouser. 2008. Randomized Cuts for 3D Mesh Analysis. ACM Trans. Graph. 27, 5, Article 145 (Dec. 2008), 12 pages. Google ScholarDigital Library
    27. G.H. Golub and C.F. Van Loan. 1996. Matrix computations. Johns Hopkins University Press, Baltimore, MD.Google Scholar
    28. Kan Guo, Dongqing Zou, and Xiaowu Chen. 2015. 3D Mesh Labeling via Deep Convolutional Neural Networks. ACM Trans. Graph. 35, 1, Article 3 (Dec. 2015), 12 pages. Google ScholarDigital Library
    29. Ruizhen Hu, Lubin Fan, and Ligang Liu. 2012. Co-Segmentation of 3D Shapes via Subspace Clustering. Comput. Graph. Forum 31, 5 (Aug. 2012), 1703–1713. Google ScholarDigital Library
    30. Qixing Huang, Vladlen Koltun, and Leonidas Guibas. 2011. Joint Shape Segmentation with Linear Programming. ACM Trans. Graph. 30, 6, Article 125 (Dec. 2011), 12 pages. Google ScholarDigital Library
    31. Qixing Huang, Fan Wang, and Leonidas Guibas. 2014. Functional Map Networks for Analyzing and Exploring Large Shape Collections. ACM Transactions on Graphics 33, 4, Article 36 (July 2014), 11 pages. Google ScholarDigital Library
    32. Qi-Xing Huang, Simon Flöry, Natasha Gelfand, Michael Hofer, and Helmut Pottmann. 2006. Reassembling Fractured Objects by Geometric Matching. ACM Trans. Graph. 25, 3 (July 2006), 569–578. Google ScholarDigital Library
    33. Qi-Xing Huang and Leonidas Guibas. 2013. Consistent Shape Maps via Semidefinite Programming. In Proceedings of the Eleventh Eurographics/ACMSIGGRAPH Symposium on Geometry Processing (SGP ’13). Eurographics Association, Aire-la-Ville, Switzerland, Switzerland, 177–186. Google ScholarDigital Library
    34. Qi-Xing Huang, Guo-Xin Zhang, Lin Gao, Shi-Min Hu, Adrian Butscher, and Leonidas Guibas. 2012. An Optimization Approach for Extracting and Encoding Consistent Maps in a Shape Collection. ACM Trans. Graph. 31, 6, Article 167 (Nov. 2012), 11 pages. Google ScholarDigital Library
    35. Xiangru Huang, Zhenxiao Liang, Chandrajit Bajaj, and Qixing Huang. 2017. Translation Synchronization via Truncated Least Squares. In Advances in Neural Information Processing Systems 30, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (Eds.). Curran Associates, Inc., Long Beach, CA, USA, 1459–1468. http://papers.nips.cc/paper/6744-translation-synchronization-via-truncated-least-squares.pdf Google ScholarDigital Library
    36. Xiangru Huang, Zhenxiao Liang, Xiaowei Zhou, Yao Xie, Leonidas J. Guibas, and Qixing Huang. 2019. Learning Transformation Synchronization. In Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR). IEEE, Piscataway, NJ, USA.Google ScholarCross Ref
    37. Daniel Huber. 2002. Automatic Three-dimensional Modeling from Reality. Ph.D. Dissertation. Robotics Institute, Carnegie Mellon University, Pittsburgh, PA. Google ScholarDigital Library
    38. Evangelos Kalogerakis, Melinos Averkiou, Subhransu Maji, and Siddhartha Chaudhuri. 2017. 3D Shape Segmentation with Projective Convolutional Networks. In CVPR. IEEE Computer Society, 6630–6639.Google Scholar
    39. Evangelos Kalogerakis, Aaron Hertzmann, and Karan Singh. 2010. Learning 3D Mesh Segmentation and Labeling. In ACM SIGGRAPH 2010 Papers (SIGGRAPH ’10). ACM, New York, NY, USA, Article 102, 12 pages. Google ScholarDigital Library
    40. Raghunandan H. Keshavan, Andrea Montanari, and Sewoong Oh. 2010. Matrix Completion from a Few Entries. IEEE Trans. Inf. Theor. 56, 6 (June 2010), 2980–2998. Google ScholarDigital Library
    41. Vladimir G. Kim, Wilmot Li, Niloy J. Mitra, Siddhartha Chaudhuri, Stephen DiVerdi, and Thomas Funkhouser. 2013. Learning Part-based Templates from Large Collections of 3D Shapes. ACM Trans. Graph. 32, 4, Article 70 (July 2013), 12 pages. Google ScholarDigital Library
    42. Vladimir G. Kim, Wilmot Li, Niloy J. Mitra, Stephen DiVerdi, and Thomas Funkhouser. 2012. Exploring Collections of 3D Models Using Fuzzy Correspondences. ACM Trans. Graph. 31, 4, Article 54 (July 2012), 11 pages. Google ScholarDigital Library
    43. Vladimir G. Kim, Yaron Lipman, and Thomas Funkhouser. 2011. Blended Intrinsic Maps. ACM Trans. Graph. 30, 4 (July 2011), 79:1–79:12. Google ScholarDigital Library
    44. Tamara G. Kolda and Brett W. Bader. 2009. Tensor Decompositions and Applications. SIAM Rev. 51, 3 (2009), 455–500. Google ScholarDigital Library
    45. Vladislav Kraevoy and Alla Sheffer. 2004. Cross-parameterization and Compatible Remeshing of 3D Models. ACM Trans. Graph. 23, 3 (Aug. 2004), 861–869. Google ScholarDigital Library
    46. Vladislav Kreavoy, Dan Julius, and Alla Sheffer. 2007. Model Composition from Interchangeable Components. In Proceedings of the 15th Pacific Conference on Computer Graphics and Applications. IEEE Computer Society, Washington, DC, USA, 129–138. Google ScholarDigital Library
    47. Dana Lahat, Tülay Adalı, and Christian Jutten. 2015. Multimodal Data Fusion: An Overview of Methods, Challenges and Prospects. Proceedings of the IEEE 103, 9 (Aug. 2015), 1449–1477.Google ScholarCross Ref
    48. Spyridon Leonardos, Xiaowei Zhou, and Kostas Daniilidis. 2017. Distributed consistent data association via permutation synchronization. In ICRA. IEEE, Singapore, 2645–2652.Google Scholar
    49. Canyi Lu, Jiashi Feng, Yudong Chen, Wei Liu, Zhouchen Lin, and Shuicheng Yan. 2016. Tensor Robust Principal Component Analysis: Exact Recovery of Corrupted Low-Rank Tensors via Convex Optimization. In CVPR. IEEE Computer Society, Las Vegas, NV, USA, 5249–5257.Google Scholar
    50. Damien Muti and Salah Bourennane. 2005. Multidimensional filtering based on a tensor approach. Signal Processing 85, 12 (2005), 2338–2353. Google ScholarDigital Library
    51. Andy Nguyen, Mirela Ben-Chen, Katarzyna Welnicka, Yinyu Ye, and Leonidas Guibas. 2011. An Optimization Approach to Improving Collections of Shape Maps. Computer Graphics Forum 30 (2011), 1481–1491. Issue 5.Google ScholarCross Ref
    52. Ryutarou Ohbuchi, Kunio Osada, Takahiko Furuya, and Tomohisa Banno. 2008. Salient local visual features for shape-based 3D model retrieval. In Shape Modeling and Applications, 2008. SMI 2008. IEEE International Conference on. IEEE Computer Society, Berkeley, CA, USA, 93–102.Google Scholar
    53. Robert Osada, Thomas Funkhouser, Bernard Chazelle, and David Dobkin. 2002. Shape Distributions. ACM Trans. Graph. 21, 4 (Oct. 2002), 807–832. Google ScholarDigital Library
    54. Maks Ovsjanikov, Mirela Ben-Chen, Justin Solomon, Adrian Butscher, and Leonidas J. Guibas. 2012. Functional maps: a flexible representation of maps between shapes. ACM Trans. Graph. 31, 4 (2012), 30:1–30:11. Google ScholarDigital Library
    55. Deepti Pachauri, Risi Kondor, and Vikas Singh. 2013. Solving the multi-way matching problem by permutation synchronization. In Advances in Neural Information Processing Systems 26, C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K. Q. Weinberger (Eds.). Curran Associates, Inc., Lake Tahoe, Nevada, US, 1860–1868. http://papers.nips.cc/paper/4987-solving-the-multi-way-matching-problem-by-permutation-synchronization.pdf Google ScholarDigital Library
    56. Dau Pelleg and Andrew Moore. 2000. X-means: Extending K-means with Efficient Estimation of the Number of Clusters. In In Proceedings of the 17th International Conf. on Machine Learning. Morgan Kaufmann, San Francisco, CA, USA, 727–734. Google ScholarDigital Library
    57. Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J. Guibas. 2017. PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space. CoRR abs/1706.02413 (2017).Google Scholar
    58. W.M. Rand. 1971. Objective criteria for the evaluation of clustering methods. J. Amer. Statist. Assoc. 66, 336 (1971), 846–850.Google ScholarCross Ref
    59. E. Rodolà, L. Cosmo, M. M. Bronstein, A. Torsello, and D. Cremers. 2017. Partial Functional Correspondence. Comput. Graph. Forum 36, 1 (Jan. 2017), 222–236. Google ScholarDigital Library
    60. Raif M. Rustamov. 2007. Laplace-Beltrami Eigenfunctions for Deformation Invariant Shape Representation. In Proceedings of the Fifth Eurographics Symposium on Geometry Processing (SGP ’07). Eurographics Association, Aire-la-Ville, Switzerland, Switzerland, 225–233. http://dl.acm.org/citation.cfm?id=1281991.1282022 Google ScholarDigital Library
    61. John Schreiner, Arul Asirvatham, Emil Praun, and Hugues Hoppe. 2004. Inter-surface Mapping. ACM Trans. Graph. 23, 3 (Aug. 2004), 870–877. Google ScholarDigital Library
    62. Vatsal Sharan and Gregory Valiant. 2017. Orthogonalized ALS: A Theoretically Principled Tensor Decomposition Algorithm for Practical Use. In Proceedings of the 34th International Conference on Machine Learning (Proceedings of Machine Learning Research), Doina Precup and Yee Whye Teh (Eds.), Vol. 70. PMLR, International Convention Centre, Sydney, Australia, 3095–3104. Google ScholarDigital Library
    63. Amnon Shashua and Tamir Hazan. 2005. Non-negative Tensor Factorization with Applications to Statistics and Computer Vision. In Proceedings of the 22Nd International Conference on Machine Learning (ICML ’05). ACM, New York, NY, USA, 792–799. Google ScholarDigital Library
    64. Yanyao Shen, Qixing Huang, Nati Srebro, and Sujay Sanghavi. 2016. Normalized Spectral Map Synchronization. In Advances in Neural Information Processing Systems 29, D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett (Eds.). Curran Associates, Inc., Barcelona, Spain, 4925–4933. http://papers.nips.cc/paper/6128-normalized-spectral-map-synchronization.pdf Google ScholarDigital Library
    65. Oana Sidi, Oliver van Kaick, Yanir Kleiman, Hao Zhang, and Daniel Cohen-Or. 2011. Unsupervised Co-segmentation of a Set of Shapes via Descriptor-space Spectral Clustering. ACM Trans. Graph. 30, 6, Article 126 (Dec. 2011), 10 pages. Google ScholarDigital Library
    66. Nicholas D Sidiropoulos, Rasmus Bro, and Georgios B Giannakis. 2000. Parallel factor analysis in sensor array processing. IEEE transactions on Signal Processing 48, 8 (2000), 2377–2388. Google ScholarDigital Library
    67. Nicholas D. Sidiropoulos, Lieven De Lathauwer, Xiao Fu, Kejun Huang, Evangelos E. Papalexakis, and Christos Faloutsos. 2017. Tensor Decomposition for Signal Processing and Machine Learning. Trans. Sig. Proc. 65, 13 (July 2017), 3551–3582. Google ScholarDigital Library
    68. Hang Su, Subhransu Maji, Evangelos Kalogerakis, and Erik Learned-Miller. 2015. Multi-view Convolutional Neural Networks for 3D Shape Recognition. In Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV) (ICCV ’15). IEEE Computer Society, Washington, DC, USA, 945–953. Google ScholarDigital Library
    69. Robert W. Sumner and Jovan Popović. 2004. Deformation transfer for triangle meshes. ACM Trans. Graph. 23, 3 (Aug. 2004), 399–405. Google ScholarDigital Library
    70. Jimeng Sun, Dacheng Tao, and Christos Faloutsos. 2006. Beyond Streams and Graphs: Dynamic Tensor Analysis. In Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD ’06). ACM, New York, NY, USA, 374–383. Google ScholarDigital Library
    71. Jian-Tao Sun, Hua-Jun Zeng, Huan Liu, Yuchang Lu, and Zheng Chen. 2005. CubeSVD: A Novel Approach to Personalized Web Search. In Proceedings of the 14th International Conference on World Wide Web (WWW ’05). ACM, New York, NY, USA, 382–390. Google ScholarDigital Library
    72. Yifan Sun, Zhenxiao Liang, Xiangru Huang, and Qixing Huang. 2018. Joint Map and Symmetry Synchronization. In Computer Vision – ECCV 2018 – 15th European Conference, Munich, Germany, September 8–14, 2018, Proceedings, Part V. Springer, Munich, Germany, 257–275.Google Scholar
    73. Oliver van Kaick, Kai Xu, Hao Zhang, Yanzhen Wang, Shuyang Sun, Ariel Shamir, and Daniel Cohen-Or. 2013. Co-hierarchical Analysis of Shape Structures. ACM Trans. Graph. 32, 4, Article 69 (July 2013), 10 pages. Google ScholarDigital Library
    74. Oliver van Kaick, Hao Zhang, Ghassan Hamarneh, and Daniel Cohen-Or. 2011. A Survey on Shape Correspondence. Comput. Graph. Forum 30, 6 (2011), 1681–1707.Google ScholarCross Ref
    75. M. A. O. Vasilescu and Demetri Terzopoulos. 2002. Multilinear Analysis of Image Ensembles: TensorFaces. In Proceedings of the 7th European Conference on Computer Vision-Part I (ECCV ’02). Springer-Verlag, London, UK, UK, 447–460. http://dl.acm.org/citation.cfm?id=645315.649173 Google ScholarDigital Library
    76. Daniel Vlasic, Matthew Brand, Hanspeter Pfister, and Jovan Popović. 2005. Face transfer with multilinear models. ACM transactions on graphics (TOG) 24, 3 (2005), 426–433. Google ScholarDigital Library
    77. Fan Wang, Qixing Huang, and Leonidas J. Guibas. 2013. Image Co-segmentation via Consistent Functional Maps. In Proceedings of the 2013 IEEE International Conference on Computer Vision (ICCV ’13). IEEE Computer Society, Washington, DC, USA, 849–856. Google ScholarDigital Library
    78. Lanhui Wang and Amit Singer. 2013. Exact and Stable Recovery of Rotations for Robust Synchronization. Information and Inference: A Journal of the IMA 2 (2013), 145–193. Issue 2.Google ScholarCross Ref
    79. Yunhai Wang, Shmulik Asafi, Oliver van Kaick, Hao Zhang, Daniel Cohen-Or, and Baoquan Chen. 2012. Active Co-analysis of a Set of Shapes. ACM Trans. Graph. 31, 6, Article 165 (Nov. 2012), 10 pages. Google ScholarDigital Library
    80. Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xiaoou Tang, and Jianxiong Xiao. 2015. 3D ShapeNets: A deep representation for volumetric shapes. In CVPR. IEEE Computer Society, 1912–1920.Google Scholar
    81. Kun Xu, Kang Chen, Hongbo Fu, Wei-Lun Sun, and Shi-Min Hu. 2013. Sketch2Scene: Sketch-based Co-retrieval and Co-placement of 3D Models. ACM Trans. Graph. 32, 4, Article 123 (July 2013), 15 pages. Google ScholarDigital Library
    82. Rui Xu and D. Wunsch, II. 2005. Survey of Clustering Algorithms. Trans. Neur. Netw. 16, 3 (May 2005), 645–678. Google ScholarDigital Library
    83. Li Yi, Leonidas Guibas, Aaron Hertzmann, Vladimir G. Kim, Hao Su, and Ersin Yumer. 2017a. Learning Hierarchical Shape Segmentation and Labeling from Online Repositories. ACM Trans. Graph. 36, 4, Article 70 (July 2017), 12 pages. Google ScholarDigital Library
    84. Li Yi, Vladimir G. Kim, Duygu Ceylan, I-Chao Shen, Mengyan Yan, Hao Su, Cewu Lu, Qixing Huang, Alla Sheffer, and Leonidas Guibas. 2016. A Scalable Active Framework for Region Annotation in 3D Shape Collections. ACM Trans. Graph. 35, 6, Article 210 (Nov. 2016), 210:1–210:12 pages. Google ScholarDigital Library
    85. Li Yi, Hao Su, Xingwen Guo, and Leonidas J. Guibas. 2017b. SyncSpecCNN: Synchronized Spectral CNN for 3D Shape Segmentation. In CVPR. IEEE Computer Society, 6584–6592.Google Scholar
    86. Mehmet Ersin Yumer and Levent Burak Kara. 2012. Co-abstraction of Shape Collections. ACM Trans. Graph. 31, 6, Article 166 (Nov. 2012), 11 pages. Google ScholarDigital Library
    87. Christopher Zach, Manfred Klopschitz, and Marc Pollefeys. 2010. Disambiguating visual relations using loop constraints.. In CVPR. IEEE Computer Society, San Francisco, CA, 1426–1433. http://dblp.uni-trier.de/db/conf/cvpr/cvpr2010.html#ZachKP10Google ScholarCross Ref
    88. Hongyang Zhang, Vatsal Sharan, Moses Charikar, and Yingyu Liang. 2018. Recovery Guarantees for Quadratic Tensors with Limited Observations. CoRR abs/1811.00148 (2018).Google Scholar
    89. Zaiwei Zhang, Zhenxiao Liang, Lemeng Wu, Xiaowei Zhou, and Qixing Huang. 2019. Path-Invariant Map Networks. In Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR). IEEE, Piscataway, NJ, USA.Google ScholarCross Ref
    90. Xiaowei Zhou, Menglong Zhu, and Kostas Daniilidis. 2015. Multi-image Matching via Fast Alternating Minimization. In ICCV. IEEE Computer Society, Santiago, Chile, 4032–4040. Google ScholarDigital Library

ACM Digital Library Publication:

Overview Page: