“Temporal light field reconstruction for rendering distribution effects” by Lehtinen, Aila, Chen, Laine and Durand

  • ©Jaakko Lehtinen, Timo Aila, Jiawen Chen, Samuli Laine, and Frédo Durand

Conference:


Type:


Title:

    Temporal light field reconstruction for rendering distribution effects

Presenter(s)/Author(s):



Abstract:


    Traditionally, effects that require evaluating multidimensional integrals for each pixel, such as motion blur, depth of field, and soft shadows, suffer from noise due to the variance of the high-dimensional integrand. In this paper, we describe a general reconstruction technique that exploits the anisotropy in the temporal light field and permits efficient reuse of samples between pixels, multiplying the effective sampling rate by a large factor. We show that our technique can be applied in situations that are challenging or impossible for previous anisotropic reconstruction methods, and that it can yield good results with very sparse inputs. We demonstrate our method for simultaneous motion blur, depth of field, and soft shadows.

References:


    1. Arikan, O., 2009. Pixie — Open source RenderMan. http://www.renderpixie.com.Google Scholar
    2. Bolin, M. R., and Meyer, G. W. 1995. A frequency based ray tracer. In Proc. ACM SIGGRAPH 95, 409–418. Google Scholar
    3. Chai, J.-X., Tong, X., Chan, S.-C., and Shum, H.-Y. 2000. Plenoptic sampling. In Proc. ACM SIGGRAPH 2000, 307–318. Google Scholar
    4. Chen, S. E., and Williams, L. 1993. View interpolation for image synthesis. In Proc. ACM SIGGRAPH 93, 279–288. Google Scholar
    5. Cook, R. L., Porter, T., and Carpenter, L. 1984. Distributed ray tracing. In Computer Graphics (Proc. ACM SIGGRAPH 84), vol. 18, 137–145. Google Scholar
    6. Cook, R. L., Carpenter, L., and Catmull, E. 1987. The Reyes image rendering architecture. In Computer Graphics (Proc. ACM SIGGRAPH 87), vol. 21, 95–102. Google Scholar
    7. Durand, F., Holzschuch, N., Soler, C., Chan, E., and Sillion, F. X. 2005. A frequency analysis of light transport. ACM Trans. Graph. 24, 3, 1115–1126. Google ScholarDigital Library
    8. Egan, K., Tseng, Y., Holzschuch, N., Durand, F., and Ramamoorthi, R. 2009. Frequency analysis and sheared reconstruction for rendering motion blur. ACM Trans. Graph. 28, 3, 93:1–93:13. Google ScholarDigital Library
    9. Egan, K., Hecht, F., Durand, F., and Ramamoorthi, R. 2011. Frequency analysis and sheared filtering for shadow light fields of complex occluders. ACM Trans. Graph. 30, 2, 9:1–9:13. Google ScholarDigital Library
    10. Glassner, A. 1988. Spacetime ray tracing for animation. IEEE Computer Graphics and Applications 8, 2, 60–70. Google ScholarDigital Library
    11. Hachisuka, T., Jarosz, W., Weistroffer, R. P., Dale, K., Humphreys, G., Zwicker, M., and Jensen, H. W. 2008. Multidimensional adaptive sampling and reconstruction for ray tracing. ACM Trans. Graph. 27, 3, 33:1–33:10. Google ScholarDigital Library
    12. Lee, S., Eisemann, E., and Seidel, H.-P. 2010. Real-time lens blur effects and focus control. ACM Trans. Graph. 29, 4, 65:1–65:7. Google ScholarDigital Library
    13. Max, N., and Lerner, D. 1985. A two-and-a-half-d motion-blur algorithm. In Computer Graphics (Proc. ACM SIGGRAPH 85), vol. 19, 85–93. Google Scholar
    14. Nehab, D., Sander, P., Lawrence, J., Tatarchuk, N., and Isidoro, J. 2007. Accelerating real-time shading with reverse reprojection caching. In Proc. Graphics hardware, 25–35. Google ScholarDigital Library
    15. Ng, R. 2005. Fourier slice photography. ACM Trans. Graph. 24, 3, 735–744. Google ScholarDigital Library
    16. Nguyen, H. 2007. GPU Gems 3. Addison-Wesley Professional. Google Scholar
    17. Overbeck, R., Donner, C., and Ramamoorthi, R. 2009. Adaptive wavelet rendering. ACM Trans. Graph. 28, 5, 140:1–140:12. Google ScholarDigital Library
    18. Pharr, M., and Humphreys, G. 2010. Physically Based Rendering, 2nd ed. Morgan Kauffmann. Google Scholar
    19. Potmesil, M., and Chakravarty, I. 1983. Modeling motion blur in computer-generated images. In Computer Graphics (Proc. ACM SIGGRAPH 83), vol. 17, 389–399. Google Scholar
    20. Ragan-Kelley, J., Lehtinen, J., Chen, J., Doggett, M., and Durand, F. 2011. Decoupled sampling for real-time graphics pipelines. ACM Trans. Graph.. To appear. Google Scholar
    21. Ramamoorthi, R., and Hanrahan, P. 2004. A signal-processing framework for reflection. ACM Trans. Graph. 23, 1004–1042. Google ScholarDigital Library
    22. Soler, C., Subr, K., Durand, F., Holzschuch, N., and Sillion, F. 2009. Fourier depth of field. ACM Trans. Graph. 28, 2, 18:1–18:12. Google ScholarDigital Library
    23. Walter, B., Drettakis, G., and Parker, S. 1999. Interactive rendering using the render cache. In Proc. Eurographics Workshop on Rendering, 235–246. Google Scholar
    24. Walter, B., Bala, K., Kulkarni, M., and Pingali, K. 2008. Fast agglomerative clustering for rendering. In Proc. Symposium on Interactive Ray Tracing, 81–86.Google Scholar
    25. Yu, X., Wang, R., and Yu, J. 2010. Real-time depth of field rendering via dynamic light field generation and filtering. Comput. Graph. Forum 29, 7, 2099–2107.Google ScholarCross Ref


ACM Digital Library Publication:



Overview Page: