“Tailored displays to compensate for visual aberrations” by Pamplona, Oliveira, Aliaga and Raskar

  • ©Vitor F. Pamplona, Manuel M. Oliveira, Daniel G. Aliaga, and Ramesh Raskar




    Tailored displays to compensate for visual aberrations



    We introduce tailored displays that enhance visual acuity by decomposing virtual objects and placing the resulting anisotropic pieces into the subject’s focal range. The goal is to free the viewer from needing wearable optical corrections when looking at displays. Our tailoring process uses aberration and scattering maps to account for refractive errors and cataracts. It splits an object’s light field into multiple instances that are each in-focus for a given eye sub-aperture. Their integration onto the retina leads to a quality improvement of perceived images when observing the display with naked eyes. The use of multiple depths to render each point of focus on the retina creates multi-focus, multi-depth displays. User evaluations and validation with modified camera optics are performed. We propose tailored displays for daily tasks where using eyeglasses are unfeasible or inconvenient (e.g., on head-mounted displays, e-readers, as well as for games); when a multi-focus function is required but undoable (e.g., driving for farsighted individuals, checking a portable device while doing physical activities); or for correcting the visual distortions produced by high-order aberrations that eyeglasses are not able to.


    1. Akeley, K., Watt, S. J., Girshick, A. R., and Banks, M. S. 2004. A stereo display prototype with multiple focal distances. In SIGGRAPH 2004, I804–813. Google ScholarDigital Library
    2. Alonso Jr., M., Barreto, A., and Adjouadi, M. 2007. Development and evaluation of a custom display compensation method for computer users based on individual visual characteristics. In 16th Int. Conf. Comp.Google Scholar
    3. Barsky, B. A. 2004. Vision-realistic rendering. In APGV, 73–81. Google ScholarDigital Library
    4. Camp, J., Maguire, L., and Robb, R. 1990. An efficient ray tracing algorithm for modeling visual performance from corneal topography. In Proc. Vis. in Bio. Comp., 278–285.Google Scholar
    5. Campbell, C. 2010. Relative importance of sources of chromatic refractive error in the human eye. J. Opt. Soc. Am. A 27(4).Google ScholarCross Ref
    6. Charman, W., and Heron, G. 2000. On the linearity of accommodation dynamics. Vision Research 40(15), 2057–2066.Google ScholarCross Ref
    7. Damera-Venkata, N., and Chang, N. L. 2009. Display supersampling. ACM TOG 28, 9:1–19. Google ScholarDigital Library
    8. Deering, M. F. 2005. A photon accurate model of the human eye. In SIGGRAPH 2005, vol. 24(3), 649–658. Google ScholarDigital Library
    9. Didyk, P., Eisemann, E., Ritschel, T., Myszkowski, K., and Seidel, H.-P. 2010. Apparent display resolution enhancement for moving images. In SIGGRAPH 2010, 113:1–8. Google ScholarDigital Library
    10. Dodgson, N. 2009. Analysis of the viewing zone of multi-view autostereoscopic displays. In SPIE SD&A, vol. 4660, 254–265.Google ScholarCross Ref
    11. Donnelly, W., Pesudovs, K., Marsack, J., Sarver, E., and Applegate, R. 2004. Quantifying scatter in Shack-Hartmann images to evaluate nuclear cataract. J Refract Surg 20(5), S515–S522.Google ScholarCross Ref
    12. Douali, M. G., and Silver, J. D. 2004. Self-optimised vision correction with adaptive spectacle lenses in developing countries. Ophthal Physiol Opt 24.Google Scholar
    13. EDPRG. 2004. Prevalence of cataract and pseudophakia/aphakia among adults in the united states. Arch Ophthalmol 122.Google Scholar
    14. Goldring, E., Cain, J., Larson, K., Price, L., Smith, L., Rayej, S., and Cavallerano, J. 2006. Enhanced visual experiences and seeing hardware for reduced vision. Optom. 77(2).Google Scholar
    15. Hoffman, D. M., Girshick, A. R., Akeley, K., and Banks, M. S. 2005. Vergence–accommodation conflicts hinder visual performance and cause visual fatigue. J. Vis. 5, 10, 834–862.Google Scholar
    16. Huang, F.-C., and Barsk, B. A. 2011. A framework for aberration compensated displays. Tech. Rep. UCB/EECS-2011-16.Google Scholar
    17. Isaksen, A., McMillan, L., and Gortler, S. J. 2000. Dynamically reparameterized light fields. In SIGGRAPH 2000. Google ScholarDigital Library
    18. Isono, H., Yasuda, M., and Sasazawa, H. 1993. Autostereoscopic 3-D display using LCD-generated parallax barrier. Electr. Comm. Japan 76(7), 77–84.Google Scholar
    19. Ives, F. E., 1903. Parallax stereogram & process of making same. US Patent 725567.Google Scholar
    20. Jaynes, C., and Ramakrishnan, D. 2003. Super-resolution composition in multi-projector displays. In IEEE ProCams.Google Scholar
    21. Jeong, T. M., Ko, D.-K., and Lee, J. 2005. Generalized ray-transfer matrix for an optical element having an arbitrary wave-front aberration. Opt. Lett. 30(22), 3009–11.Google ScholarCross Ref
    22. Lanman, D., Hirsch, M., Kim, Y., and Raskar, R. 2010. Content-adaptive parallax barriers. ACM TOG 29(6), 163:1–10. Google ScholarDigital Library
    23. Levoy, M., Chen, B., Vaish, V., Horowitz, M., McDowall, I., and Bolas, M. 2004. Synthetic aperture confocal imaging. ACM TOG 23, 825–834. Google ScholarDigital Library
    24. Levoy, M., Zhang, Z., and McDowall, I. 2009. Recording and controlling the 4D light field in a microscope using microlens arrays. J Microsc 235(2), 144–162.Google ScholarCross Ref
    25. Liang, J., Grimm, B., Goelz, S., and Bille, J. 1994. Objective measurement of wave aberrations of the human eye with a Hartmann-Shack sensor. JOSA A 11(7), 1949–1957.Google ScholarCross Ref
    26. Liang, J., Williams, D. R., and Miller, D. T. 1997. Super-normal vision & high-resolution retinal imaging through adaptive optics. JOSA A 14(11), 2884–2892.Google ScholarCross Ref
    27. Lippmann, G. 1908. épreuves réversibles donnant la sensation du relief. J Phys 7, 821–825.Google Scholar
    28. Liu, S., and Hua, H. 2009. Time-multiplexed dual-focal plane head-mounted display with a liquid lens. Opt. Lett. 34(11), 1642.Google ScholarCross Ref
    29. Machado, G. M., Oliveira, M. M., and Fernandes, L. A. F. 2009. A physiologically-based model for simulation of color vision deficiency. IEEE Trans. Vis. Comp. Graph. 15(6). Google ScholarDigital Library
    30. Maddox, E. E. 1886. Investigations in the relation between convergence and accommodation of the eyes. J Anat Physiol 20(3).Google Scholar
    31. ming Dai, G., Campbell, C. E., Chen, L., Zhao, H., and Chernyak, D. 2009. Wavefront propagation from one plane to another with the use of zernike polynomials and taylor mono-mials. Appl Opt 48(3), 477–488.Google ScholarCross Ref
    32. Morgan, I. G., Ohno-Matsui, K., and Saw, S.-M. 2012. Myopia. The Lancet 379: 1739–48.Google ScholarCross Ref
    33. Ng, R., and Hanrahan, P. 2006. Digital correction of lens aberrations in light field photography. In SPIE IODC, vol. 6342.Google Scholar
    34. Ng, R., Levoy, M., Brédif, M., Duval, G., Horowitz, M., and Hanrahan, P. 2005. Light field photography with a hand-held plenoptic camera. Tech. Rep. CTSR 2005–02.Google Scholar
    35. Ng, R. 2005. Fourier slice photography. ACM TOG 24, 735–744. Google ScholarDigital Library
    36. Pamplona, V. F., Oliveira, M. M., and Baranoski, G. 2009. Photorealistic models for pupil light reflex and iridal pattern deformation. ACM TOG 28(4), 106. Google ScholarDigital Library
    37. Pamplona, V. F., Mohan, A., Oliveira, M. M., and Raskar, R. 2010. NETRA: interactive display for estimating refractive errors and focal range. In SIGGRAPH 2010, 77:1–8. Google ScholarDigital Library
    38. Pamplona, V. F., Passos, E. B., Zizka, J., Oliveira, M. M., Lawson, E., Clua, E., and Raskar, R. 2011. CATRA: interactive measuring and modeling of cataracts. In SIGGRAPH 2011, 47:1–8. Google ScholarDigital Library
    39. Porterfield, W. 1759. A Treatise on the Eye: the manner & phenomena of vision.Google Scholar
    40. Rolland, J. P., Krueger, M. W., and Goon, A. 2000. Multi-focal planes head-mounted displays. Appl Opt 39(19), 3209–15.Google ScholarCross Ref
    41. Rozema, J. J., Dyck, D. E. V., and Tassignon, M.-J. 2005. Clinical comparison of 6 aberrometers. part 1: Technical specifications. JCRS 31, 6, 1114–1127.Google Scholar
    42. Rucker, F. J., and Kruger, P. B. 2006. Cone contributions to signals for accommodation and the relationship to refractive error. Vision Research 46, 3079–3089.Google ScholarCross Ref
    43. Schaeffel, F. 2006. Myopia: The importance of seeing fine detail. Curr. Biol. 16(7), R257–R259.Google ScholarCross Ref
    44. Schwiegerling, J. 2000. Theoretical limits to visual performance. Surv Ophthalmol 45(2), 139–146.Google ScholarCross Ref
    45. Schwiegerling, J. 2004. Field guide to visual and ophthalmic optics. SPIE.Google Scholar
    46. Sugiura, N., and Morita, S. 1993. Variable-focus liquid-filled optical lens. Appl Opt. 32(22).Google Scholar
    47. Thibos, L., Qi, X., and Miller, D. T. 1999. Vision through a liquid-crystal spatial light modulator. In Adaptive Optics for Industry and Medicine.Google Scholar
    48. Vaish, V., Wilburn, B., Joshi, N., and Levoy, M. 2004. Using plane + parallax for calibrating dense camera arrays. In IEEE CVPR, 2–9.Google Scholar
    49. Wetzstein, G., Lanman, D., Heidrich, W., and Raskar, R. 2011. Layered 3D: Tomographic image synthesis for attenuation-based light field and high dynamic range displays. ACM TOG 30, 4. Google ScholarDigital Library
    50. WHO, 2005. State of the world’s sight. vision 2020: the right to sight 1999–2005.Google Scholar
    51. Yu, N., Genevet, P., Kats, M. A., Aieta, F., Tetienne, J.-P., Capasso, F., and Gaburro, Z. 2011. Light propagation with phase discontinuities. Science 334 (6054), 333–337.Google ScholarCross Ref

ACM Digital Library Publication: