“Synthetic silviculture: multi-scale modeling of plant ecosystems” by Makowski, Hädrich, Scheffczyk, Michels, Pirk, et al. …

  • ©Milosz Makowski, Torsten Hädrich, Jan Scheffczyk, Dominik L. Michels, Soren Pirk, and Wojtek Palubicki

Conference:


Type:


Title:

    Synthetic silviculture: multi-scale modeling of plant ecosystems

Session/Category Title: Design and Layout


Presenter(s)/Author(s):



Abstract:


    Due to the enormous amount of detail and the interplay of various biological phenomena, modeling realistic ecosystems of trees and other plants is a challenging and open problem. Previous research on modeling plant ecologies has focused on representations to handle this complexity, mostly through geometric simplifications, such as points or billboards. In this paper we describe a multi-scale method to design large-scale ecosystems with individual plants that are realistically modeled and faithfully capture biological features, such as growth, plant interactions, different types of tropism, and the competition for resources. Our approach is based on leveraging inter- and intra-plant self-similarities for efficiently modeling plant geometry. We focus on the interactive design of plant ecosystems of up to 500K plants, while adhering to biological priors known in forestry and botany research. The introduced parameter space supports modeling properties of nine distinct plant ecologies while each plant is represented as a 3D surface mesh. The capabilities of our framework are illustrated through numerous models of forests, individual plants, and validations.

References:


    1. L. Amissah, G. M. J. Mohren, F. Bongers, W. D. Hawthorne, and L. Poorter. 2014. Rainfall and temperature affect tree species distribution in Ghana. Journal of Tropical Ecology 30, 5 (2014), 435–446.Google ScholarCross Ref
    2. J. Andel, J. P. Bakker, and A. P. Grootjans. 1993. Mechanisms of vegetation succession: a review of concepts and perspectives. Acta Botanica Neerlandica 42, 4 (1993), 413–433.Google ScholarCross Ref
    3. C. Andújar, A. Chica, M. A. Vico, S. Moya, and P. Brunet. 2014. Inexpensive Reconstruction and Rendering of Realistic Roadside Landscapes. Comput. Graph. Forum 33, 6 (Sept. 2014), 101–117. Google ScholarDigital Library
    4. M. Aono and T.L. Kunii. 1984. Botanical Tree Image Generation. IEEE Comput. Graph. Appl. 4(5) (1984), 10–34. Google ScholarDigital Library
    5. O. Argudo, A. Chica, and C. Andujar. 2016. Single-picture Reconstruction and Rendering of Trees for Plausible Vegetation Synthesis. Comput. Graph. 57, C (2016), 55–67. Google ScholarDigital Library
    6. D. Barthélémy. 1986. Establishment of modular growth in a tropical tree: Isertia coccinea Vahl. (Rubiaceae). Philosophical Transactions of the Royal Society of London B: Biological Sciences 313, 1159 (1986), 89–94.Google ScholarCross Ref
    7. D. Barthélémy and Y. Caraglio. 2007. Plant architecture: a dynamic, multilevel and comprehensive approach to plant form, structure and ontogeny. Annals of botany 99 3 (2007), 375–407.Google ScholarCross Ref
    8. N. Bassuk, D. F. Curtis, BZ Marranca, and B. Neal. 2009. Recommended Urban Trees: Site Assessment and Tree Selection for Stress Tolerance. Cornell University, Department of Horticulture (2009).Google Scholar
    9. B. Beneš, N. Andrysco, and O. Št’ava. 2009. Interactive Modeling of Virtual Ecosystems (NPH’09). 9–16. Google ScholarDigital Library
    10. K. Boulanger, K. Bouatouch and S. Pattanaik. 2008. Rendering Trees with Indirect Lighting in Real Time (EGSR ’08). 1189–1198. Google ScholarDigital Library
    11. D. Bradley, D. Nowrouzezahrai, and P. Beardsley. 2013. Image-based Reconstruction Synthesis of Dense Foliage. ACM Trans. Graph. 32, 4, Article 74 (2013), 74:1–74:10 pages. Google ScholarDigital Library
    12. E. Bruneton and F. Neyret. 2012. Real-time Realistic Rendering and Lighting of Forests. Comput. Graph. Forum 31, 2pt1 (2012), 373–382. Google ScholarDigital Library
    13. H. Buckley, B. Case, R. Vallejos, J. Camarero, E. Gutiérrez, E. Liang, Y. Wang, and A. M. Ellison. 2016. Detecting Ecological Patterns Along Environmental Gradients: Alpine Treeline Ecotones. CHANCE 29 (04 2016), 10–15.Google Scholar
    14. G. Cordonnier, E. Galin, J. Gain, B. Benes, E. Guérin, A. Peytavie, and M.-P. Cani. 2017. Authoring Landscapes by Combining Ecosystem and Terrain Erosion Simulation. ACM Trans. Graph. 36, 4, Article 134 (2017), 134:1–134:12 pages. Google ScholarDigital Library
    15. P. de Reffye, C. Edelin, J. Françon, M. Jaeger, and C. Puech. 1988. Plant Models Faithful to Botanical Structure and Development. SIGGRAPH Comput. Graph. 22, 4 (1988), 151–158. Google ScholarDigital Library
    16. P. Decaudin and F. Neyret. 2004. Rendering Forest Scenes in Real-time (EGSR’04). 93–102. Google ScholarDigital Library
    17. O. Deussen, C. Colditz, M. Stamminger, and G. Drettakis. 2002. Interactive Visualization of Complex Plant Ecosystems. VIS ’02 (2002), 219–226. Google ScholarDigital Library
    18. O. Deussen, P. Hanrahan, B. Lintermann, R. Měch, M. Pharr, and Przemyslaw Prusinkiewicz. 1998. Realistic Modeling and Rendering of Plant Ecosystems. ACM Trans. Graph. (1998), 275–286.Google Scholar
    19. J. Digby and R. D. Firn. 1995. The gravitropic set-point angle (GSA): the identification of an important developmentally controlled variable governing plant architecture. Plant Cell Environ 18, 12 (1995), 1434–40.Google ScholarCross Ref
    20. J. I. Drever. 2005. Surface and Ground Water, Weathering, and Soils. Elsevier Science.Google Scholar
    21. C. Eloy, M. Fournier, A. Lacointe, and B. Moulia. 2017. Wind loads and competition for light sculpt trees into self-similar structures. In Nature Communications.Google Scholar
    22. J. Gain, H. Long, G. Cordonnier, and M.-P. Cani. 2017. EcoBrush: Interactive Control of Visually Consistent Large-Scale Ecosystems. Comput. Graph. Forum 36, 2 (May 2017), 63–73. Google ScholarDigital Library
    23. G. Gilet, A. Meyer, and F. Neyret. 2005. Point-based Rendering of Trees (NPH’05). 67–73. Google ScholarDigital Library
    24. C. Godin. 2000. Representing and encoding plant architecture: A review. Ann. For. Sci. 57, 5 (2000), 413–438.Google ScholarCross Ref
    25. J. Gumbau, M. Chover, I. Remolar, and C. Rebollo. 2011. View-dependent pruning for real-time rendering of trees. Computers and Graphics 35, 2 (2011), 364 — 374. Google ScholarDigital Library
    26. R. Habel, A. Kusternig, and M. Wimmer. 2009. Physically Guided Animation of Trees. Comp. Graph. Forum 28, 2 (2009), 523–532.Google ScholarCross Ref
    27. T. Hädrich, B. Benes, O. Deussen, and S. Pirk. 2017. Interactive Modeling and Authoring of Climbing Plants. Comput. Graph. Forum 36, 2 (2017), 49–61. Google ScholarDigital Library
    28. F. Hallé, R. A. A. Oldeman, and P. B. Tomlinson. 1978. Tropical Trees and Forests – An Architectural Analysis. (1978).Google Scholar
    29. M. Heydari and A. Mahdavi. 2009. The Survey of Plant Species Diversity and Richness Between Ecological Species Groups (Zagros Ecosystem, Ilam). 9 (2009).Google Scholar
    30. Shaojun Hu, Zhengrong Li, Zhang Zhiyi, Dongjian He, and Michael Wimmer. 2017. Efficient Tree Modeling from Airborne LiDAR Point Clouds. Computers & Graphics 67 (05 2017). Google ScholarDigital Library
    31. T. Ijiri, S. Owada, and T. Igarashi. 2006. Seamless Integration of Initial Sketching and Subsequent Detail Editing in Flower Modeling. Comp. Graph. Forum 25, 3 (2006), 617–624.Google ScholarCross Ref
    32. M. Jaeger and P. de Reffye. 1992. Basic concepts of computer simulation of plant growth. 17 (1992).Google Scholar
    33. M. Jaeger and J. Teng. 2003. Tree and plant volume imaging – An introductive study towards voxelized functional landscapes. PMA (2003).Google Scholar
    34. R. J. Keenan. 2015. Climate change impacts and adaptation in forest management: a review. Annals of Forest Science 72, 2 (2015), 145–167.Google ScholarCross Ref
    35. B. Lane and P. Prusinkiewicz. 2002. Generating Spatial Distributions for Multilevel Models of Plant Communities. Graphics Interface (2002), 69–80.Google Scholar
    36. C. Li, O. Deussen, Y.-Z. Song, P. Willis, and P. Hall. 2011. Modeling and Generating Moving Trees from Video. ACM Trans. Graph. 30, 6, Article 127 (2011), 127:1–127:12 pages. Google ScholarDigital Library
    37. A. Lindenmayer. 1968. Mathematical models for cellular interaction in development. J. Theor. Biol. Parts I and II, 18 (1968), 280–315.Google ScholarCross Ref
    38. B. Lintermann and O. Deussen. 1999. Interactive Modeling of Plants. IEEE Comput. Graph. Appl. 19, 1 (1999), 56–65. Google ScholarDigital Library
    39. Y. Livny, S. Pirk, Z. Cheng, F. Yan, O. Deussen, D. Cohen-Or, and B. Chen. 2011. Texture-lobes for Tree Modelling. ACM Trans. Graph. 30, 4, Article 53 (2011), 10 pages. Google ScholarDigital Library
    40. S. Longay, A. Runions, F. Boudon, and P. Prusinkiewicz. 2012. TreeSketch: interactive procedural modeling of trees on a tablet. In Proc. of the Intl. Symp. on SBIM. 107–120. Google ScholarDigital Library
    41. L. Mander, S. C. Dekker, M. Li, W. Mio, S. W. Punyasena, and T. M. Lenton. 2017. A morphometric analysis of vegetation patterns in dryland ecosystems. Royal Society Open Science 4 (February 2017).Google Scholar
    42. G. R. McGhee. 1999. Theoretical Morphology: The Concept and Its Applications. (1999).Google Scholar
    43. D. Mueller-Dombois. 1992. A Natural Dieback Theory, cohort senescence as an alternative to the decline disease theory. (01 1992), 26–37.Google Scholar
    44. M. Müller, V. Casser, J. Lahoud, N. Smith, and B. Ghanem. 2018. Sim4CV: A Photo-Realistic Simulator for Computer Vision Applications. IJCV 126, 9 (2018), 902–919. Google ScholarDigital Library
    45. R. Měch and P. Prusinkiewicz. 1996. Visual models of plants interacting with their environment. In Proc. of SIGGRAPH. ACM, 397–410. Google ScholarDigital Library
    46. B. Neubert, T. Franken, and O. Deussen. 2007. Approximate Image-based Tree-modeling Using Particle Flows. ACM Trans. Graph. 26, 3, Article 88 (2007). Google ScholarDigital Library
    47. B. Neubert, S. Pirk, O. Deussen, and C. Dachsbacher. 2011. Improved Model- and View-Dependent Pruning of Large Botanical Scenes. Comp. Graph. Forum 30, 6 (2011), 1708–1718.Google ScholarCross Ref
    48. M. Okabe, S. Owada, and T. Igarashi. 2007. Interactive Design of Botanical Trees Using Freehand Sketches and Example-based Editing. In ACM SIGGRAPH Courses. ACM, Article 26. Google ScholarDigital Library
    49. P. E. Oppenheimer. 1986. Real time design and animation of fractal plants and trees. Proc. of SIGGRAPH 20, 4 (1986), 55–64. Google ScholarDigital Library
    50. W. Palubicki, K. Horel, S. Longay, A. Runions, B. Lane, R. Měch, and P. Prusinkiewicz. 2009. Self-organizing Tree Models for Image Synthesis. ACM Trans. Graph. 28, 3, Article 58 (2009), 10 pages. Google ScholarDigital Library
    51. S. Pirk, M. Jarząbek, T. Hädrich, D. L. Michels, and W. Palubicki. 2017. Interactive Wood Combustion for Botanical Tree Models. ACM Trans. Graph. 36, 6, Article 197 (Nov. 2017), 12 pages. Google ScholarDigital Library
    52. S. Pirk, T. Niese, T. Hädrich, B. Benes, and O. Deussen. 2014. Windy Trees: Computing Stress Response for Developmental Tree Models. ACM Trans. Graph. 33, 6, Article 204 (2014), 11 pages. Google ScholarDigital Library
    53. S. Pirk, O. Stava, J. Kratt, M. A. M. Said, B. Neubert, R. Měch, B. Benes, and O. Deussen. 2012. Plastic trees: interactive self-adapting botanical tree models. ACM Trans. Graph. 31, 4, Article 50 (2012), 10 pages. Google ScholarDigital Library
    54. P. Prusinkiewicz. 1986. Graphical applications of L-systems. In Proc. on Graph. Interf. 247–253. Google ScholarDigital Library
    55. P. Prusinkiewicz and Aristid Lindenmayer. 1990. The Algorithmic Beauty of Plants. Springer-Verlag New York, Inc. Google Scholar
    56. E. Quigley, Y. Yu, J. Huang, W. Lin, and R. Fedkiw. 2018. Real-Time Interactive Tree Animation. TVCG 24, 5 (2018), 1717–1727.Google ScholarCross Ref
    57. T. Sachs. 2004. Self-organization of tree form: a model for complex social systems. Journal of Theoretical Biology 230, 2 (2004), 197 — 202.Google ScholarCross Ref
    58. N. Salzmann, S. C. Scherrer, S. Allen, and M. Rohrer. 2015. Temperature, precipitation and related extremes in mountain areas. Cambridge University Press. 28–49 pages.Google Scholar
    59. K. Shinozaki, K. Yoda, K. Hozumi, and T. Kira. 1964. A quantitative analysis of plant form: the pipe model theory. II. Further evidence of the theory and its application in forest ecology. Jpn J Ecol 14 (08 1964), 133–139.Google Scholar
    60. O. Stava, S. Pirk, J. Kratt, B. Chen, R. Měch, O. Deussen, and B. Benes. 2014. Inverse Procedural Modelling of Trees. Comp. Graph. Forum 33, 6 (2014), 118–131. Google ScholarDigital Library
    61. P. Tan, T. Fang, J. Xiao, P. Zhao, and L. Quan. 2008. Single Image Tree Modeling. ACM Trans. Graph. 27, 5, Article 108 (2008), 7 pages. Google ScholarDigital Library
    62. P. Tan, G. Zeng, J. Wang, S. B. Kang, and L. Quan. 2007. Image-based Tree Modeling. ACM Trans. Graph. 26, 3, Article 87 (2007). Google ScholarDigital Library
    63. J. Vanclay. 1995. Growth models for tropical forests: A synthesis of models and methods. Forest Science -Washington- 41 (01 1995), 7–42.Google Scholar
    64. B. Wang, Y. Zhao, and J. Barbič. 2017. Botanical Materials Based on Biomechanics. ACM Trans. Graph. 36, 4, Article 135 (July 2017), 13 pages. Google ScholarDigital Library
    65. R. H. Waring and S. W. Running. 2007. Forest Ecosystem Analysis at Multiple Time and Space Scales. In Forest Ecosystems (Third Edition). Academic Press, 1 — 16.Google Scholar
    66. R. H. Whittaker. 1977. Classification of natural communities. New York: Arno Press. Reprint of the 1962 ed. published in Plainfield, N.J., which was issued as v. 28, no. 1 of the Botanical review.Google ScholarCross Ref
    67. J. Wither, F. Boudon, M.-P. Cani, and C. Godin. 2009. Structure from silhouettes: a new paradigm for fast sketch-based design of trees. Computer Graphics Forum 28, 2 (2009), 541–550.Google ScholarCross Ref
    68. K. Xie, F. Yan, A. Sharf, D. Deussen, H. Huang, and B. Chen. 2016. Tree Modeling with Real Tree-Parts Examples. TVCG 22, 12 (2016), 2608–2618. Google ScholarDigital Library
    69. S.-I. Yamamoto. 2000. Forest gap dynamics and tree regeneration. Journal of Forest Research 5, 4 (2000), 223–229.Google ScholarCross Ref
    70. B. Zeide. 1987. Analysis of the 3/2 Power Law of Self-Thinning. Forest Science 33 (06 1987), 517–537.Google Scholar
    71. F L Zhang, J J Wang, S H Liu, and S M Zhang. 2016. Development of economic and environmental metrics for forest-based biomass harvesting. IOP Conference Series: Earth and Environmental Science 40, 1 (2016), 012052.Google ScholarCross Ref
    72. X. Zhang, G. Bao, W. Meng, M. Jaeger, H. Li, O. Deussen, and B. Chen. 2017. Tree Branch Level of Detail Models for Forest Navigation. Comp. Graph. Forum 36, 8 (2017), 402–417.Google ScholarCross Ref
    73. Y. Zhao and J. Barbič. 2013. Interactive Authoring of Simulation-ready Plants. ACM Trans. Graph. 32, 4, Article 84 (2013), 12 pages. Google ScholarDigital Library


ACM Digital Library Publication:



Overview Page: