“Surface-only liquids”

  • ©Fang Da, David Hahn, Christopher Batty, Chris Wojtan, and Eitan Grinspun




    Surface-only liquids

Session/Category Title: FLUIDS SIMULATION




    We propose a novel surface-only technique for simulating incompressible, inviscid and uniform-density liquids with surface tension in three dimensions. The liquid surface is captured by a triangle mesh on which a Lagrangian velocity field is stored. Because advection of the velocity field may violate the incompressibility condition, we devise an orthogonal projection technique to remove the divergence while requiring the evaluation of only two boundary integrals. The forces of surface tension, gravity, and solid contact are all treated by a boundary element solve, allowing us to perform detailed simulations of a wide range of liquid phenomena, including waterbells, droplet and jet collisions, fluid chains, and crown splashes.


    1. Abraham, R., Marsden, J. E., and Ratiu, T. 1988. Manifolds, Tensor Analysis, and Applications. Springer. Google ScholarDigital Library
    2. Angelidis, A., and Neyret, F. 2005. Simulation of smoke based on vortex filament primitives. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 87–96. Google ScholarDigital Library
    3. Atkinson, K. E. 1997. The numerical solution of boundary integral equations. In The State of the Art in Numerical Analysis, pp. 223–259.Google Scholar
    4. Batty, C., Bertails, F., and Bridson, R. 2007. A fast variational framework for accurate solid-fluid coupling. ACM Trans. Graph. 26, 3, 100. Google ScholarDigital Library
    5. Batty, C., Xenos, S., and Houston, B. 2010. Tetrahedral embedded boundary methods for accurate and flexible adaptive fluids. In Computer Graphics Forum, vol. 29, Wiley Online Library, 695–704.Google Scholar
    6. Batty, C., Uribe, A., Audoly, B., and Grinspun, E. 2012. Discrete viscous sheets. ACM Trans. Graph. 31, 4, 113. Google ScholarDigital Library
    7. Bojsen-Hansen, M., and Wojtan, C. 2013. Liquid surface tracking with error compensation. ACM Trans. Graph. 32, 4, 68. Google ScholarDigital Library
    8. Brochu, T., Batty, C., and Bridson, R. 2010. Matching fluid simulation elements to surface geometry and topology. ACM Trans. Graph. 29, 4, 47. Google ScholarDigital Library
    9. Brochu, T., Keeler, T., and Bridson, R. 2012. Linear-time smoke animation with vortex sheet meshes. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 87–95. Google ScholarDigital Library
    10. Brochu, T. 2006. Fluid animation with explicit surface meshes and boundary-only dynamics. Master’s thesis, University of British Columbia.Google Scholar
    11. Bush, J. W., and Hasha, A. E. 2004. On the collision of laminar jets: fluid chains and fishbones. Journal of fluid mechanics 511, 285–310.Google ScholarCross Ref
    12. Chen, C., Golberg, M., and Schaback, R. 2003. Recent developments in the dual reciprocity method using compactly supported radial basis functions. Transformation of Domain Effects to the Boundary (YF Rashed and CA Brebbia, eds), WITPress, Southampton, Boston, 138–225.Google Scholar
    13. Chentanez, N., Feldman, B. E., Labelle, F., O’Brien, J. F., and Shewchuk, J. R. 2007. Liquid simulation on lattice-based tetrahedral meshes. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer animation, 219–228. Google ScholarDigital Library
    14. Clausen, P., Wicke, M., Shewchuk, J. R., and O’brien, J. F. 2013. Simulating liquids and solid-liquid interactions with Lagrangian meshes. ACM Trans. Graph. 32, 2, 17. Google ScholarDigital Library
    15. Cohen-Steiner, D., and Morvan, J.-M. 2003. Restricted Delaunay triangulations and normal cycle. In Proceedings of the nineteenth annual Symposium on Computational Geometry, ACM, 312–321. Google ScholarDigital Library
    16. Da, F., Batty, C., and Grinspun, E. 2014. Multimaterial mesh-based surface tracking. ACM Trans. Graph. 33, 4, 112:1–112:11. Google ScholarDigital Library
    17. Da, F., Batty, C., Wojtan, C., and Grinspun, E. 2015. Double bubbles sans toil and trouble: discrete circulation-preserving vortex sheets for soap films and foams. ACM Trans. Graph. 34, 4, 149. Google ScholarDigital Library
    18. Davidson, M. R. 2000. Boundary integral prediction of the spreading of an inviscid drop impacting on a solid surface. Chemical Engineering Science 55, 6, 1159–1170.Google ScholarCross Ref
    19. Duffy, M. G. 1982. Quadrature over a pyramid or cube of integrands with a singularity at a vertex. SIAM journal on Numerical Analysis 19, 6, 1260–1262.Google ScholarCross Ref
    20. Enright, D., Fedkiw, R., Ferziger, J., and Mitchell, I. 2002. A hybrid particle level set method for improved interface capturing. Journal of Computational Physics 183, 1, 83–116. Google ScholarDigital Library
    21. Fedkiw, R. P., Aslam, T., Merriman, B., and Osher, S. 1999. A non-oscillatory Eulerian approach to interfaces in multi-material flows (the ghost fluid method). Journal of Computational Physics 152, 2, 457–492. Google ScholarDigital Library
    22. Florez, W., and Power, H. 2001. Comparison between continuous and discontinuous boundary elements in the multidomain dual reciprocity method for the solution of the two-dimensional Navier–Stokes equations. Engineering analysis with boundary elements 25, 1, 57–69.Google Scholar
    23. Foster, N., and Fedkiw, R. 2001. Practical animation of liquids. In Proceedings of SIGGRAPH 01, Annual Conference Series, 23–30. Google ScholarDigital Library
    24. Foster, N., and Metaxas, D. 1996. Realistic animation of liquids. Graphical models and image processing 58, 5, 471–483. Google ScholarDigital Library
    25. Greengard, L., and Rokhlin, V. 1987. A fast algorithm for particle simulations. Journal of Computational Physics 73, 2, 325–348. Google ScholarDigital Library
    26. Hahn, D., and Wojtan, C. 2015. High-resolution brittle fracture simulation with boundary elements. ACM Trans. Graph. 34, 4, 151. Google ScholarDigital Library
    27. Hartmann, F. 2012. Introduction to boundary elements: theory and applications. Springer Science & Business Media.Google Scholar
    28. Hong, J.-M., and Kim, C.-H. 2005. Discontinuous fluids. In ACM Trans. Graph., vol. 24, ACM, 915–920. Google ScholarDigital Library
    29. Ihmsen, M., Cornelis, J., Solenthaler, B., Horvath, C., and Teschner, M. 2014. Implicit incompressible SPH. Visualization and Computer Graphics, IEEE Transactions on 20, 3, 426–435. Google ScholarDigital Library
    30. Ihmsen, M., Orthmann, J., Solenthaler, B., Kolb, A., and Teschner, M. 2014. SPH Fluids in Computer Graphics. Eurographics 2014 – State of the Art Reports.Google Scholar
    31. James, D. L., and Pai, D. K. 1999. ArtDefo: accurate real time deformable objects. In Proceedings of SIGGRAPH 99, Annual Conference Series, 65–72. Google ScholarDigital Library
    32. Keeler, T., and Bridson, R. 2014. Ocean waves animation using boundary integral equations and explicit mesh tracking. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 11–19. Google ScholarDigital Library
    33. Ladyzhenskaya, O. A. 1963. The mathematical theory of viscous incompressible flow. Gordon and Breach New York.Google Scholar
    34. Mantič, V. 1993. A new formula for the C-matrix in the Somigliana identity. Journal of Elasticity 33, 3, 191–201.Google ScholarCross Ref
    35. Misztal, M. K., Bridson, R., Erleben, K., Bærentzen, J. A., and Anton, F. 2010. Optimization-based fluid simulation on unstructured meshes. In VRIPHYS, 11–20.Google Scholar
    36. Narain, R., Samii, A., and O’Brien, J. F. 2012. Adaptive anisotropic remeshing for cloth simulation. ACM Trans. Graph. 31, 6, 152. Google ScholarDigital Library
    37. Osher, S., and Sethian, J. A. 1988. Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79, 1, 12–49. Google ScholarDigital Library
    38. Pan, K.-L., Chou, P.-C., and Tseng, Y.-J. 2009. Binary droplet collision at high Weber number. Phys. Rev. E 80 (Sep), 036301.Google ScholarCross Ref
    39. Park, S. I., and Kim, M. J. 2005. Vortex fluid for gaseous phenomena. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 261–270. Google ScholarDigital Library
    40. Pfaff, T., Thuerey, N., and Gross, M. 2012. Lagrangian vortex sheets for animating fluids. ACM Trans. Graph. 31, 4, 112. Google ScholarDigital Library
    41. Phillips, H. B. 1933. Vector analysis. Wiley New York.Google Scholar
    42. Power, H., and Partridge, P. W. 1994. The use of Stokes’ fundamental solution for the boundary only element formulation of the three-dimensional Navier-Stokes equations for moderate Reynolds numbers. International journal for numerical methods in engineering 37, 11, 1825–1840.Google Scholar
    43. Quan, S., Lou, J., and Schmidt, D. P. 2009. Modeling merging and breakup in the moving mesh interface tracking method for multiphase flow simulations. Journal of Computational Physics 228, 7, 2660–2675. Google ScholarDigital Library
    44. Sauter, S. A., and Schwab, C. 2011. Boundary element methods. Springer.Google Scholar
    45. Schroeder, C., Zheng, W., and Fedkiw, R. 2012. Semi-implicit surface tension formulation with a Lagrangian surface mesh on an Eulerian simulation grid. Journal of Computational Physics 231, 4, 2092–2115. Google ScholarDigital Library
    46. Selle, A., Rasmussen, N., and Fedkiw, R. 2005. A vortex particle method for smoke, water and explosions. In ACM Trans. Graph., vol. 24, ACM, 910–914. Google ScholarDigital Library
    47. Stam, J. 1999. Stable fluids. In Proceedings of SIGGRAPH 99, Annual Conference Series, ACM Press/Addison-Wesley Publishing Co., 121–128. Google ScholarDigital Library
    48. Stock, M. J. 2006. A regularized inviscid vortex sheet method for three dimensional flows with density interfaces. PhD thesis, Worcester Polytechnic Institute.Google Scholar
    49. Thürey, N., Wojtan, C., Gross, M., and Turk, G. 2010. A multiscale approach to mesh-based surface tension flows. In ACM Trans. Graph., vol. 29, ACM, 48. Google ScholarDigital Library
    50. Wang, H., Mucha, P. J., and Turk, G. 2005. Water drops on surfaces. In ACM Trans. Graph., vol. 24, ACM, 921–929. Google ScholarDigital Library
    51. Weissmann, S., and Pinkall, U. 2010. Filament-based smoke with vortex shedding and variational reconnection. ACM Trans. Graph. 29, 4, 115. Google ScholarDigital Library
    52. Wojtan, C., Müller-Fischer, M., and Brochu, T. 2011. Liquid simulation with mesh-based surface tracking. In ACM SIGGRAPH 2011 Courses, ACM, 8. Google ScholarDigital Library
    53. Xue, M., Xü, H., Liu, Y., and Yue, D. K. 2001. Computations of fully nonlinear three-dimensional wave–wave and wave–body interactions. Part 1. Dynamics of steep three-dimensional waves. Journal of Fluid Mechanics 438, 11–39.Google ScholarCross Ref
    54. Zhang, X., and Bridson, R. 2014. A PPPM fast summation method for fluids and beyond. ACM Trans. Graph. 33, 6, 206. Google ScholarDigital Library
    55. Zhang, Y., Wang, H., Wang, S., Tong, Y., and Zhou, K. 2012. A deformable surface model for real-time water drop animation. Visualization and Computer Graphics, IEEE Transactions on 18, 8, 1281–1289. Google ScholarDigital Library
    56. Zhang, X., Bridson, R., and Greif, C. 2015. Restoring the missing vorticity in advection-projection fluid solvers. ACM Trans. Graph. 34, 4. Google ScholarDigital Library
    57. Zhu, B., Quigley, E., Cong, M., Solomon, J., and Fedkiw, R. 2014. Codimensional surface tension flow on simplicial complexes. ACM Trans. Graph. 33, 4, 111. Google ScholarDigital Library
    58. Zhu, Y., Bridson, R., and Greif, C. 2015. Simulating rigid body fracture with surface meshes. ACM Trans. Graph. 34, 4, 150. Google ScholarDigital Library

ACM Digital Library Publication:

Overview Page: