“Surface-only liquids”
Conference:
Type(s):
Title:
- Surface-only liquids
Session/Category Title: FLUIDS SIMULATION
Presenter(s)/Author(s):
Moderator(s):
Abstract:
We propose a novel surface-only technique for simulating incompressible, inviscid and uniform-density liquids with surface tension in three dimensions. The liquid surface is captured by a triangle mesh on which a Lagrangian velocity field is stored. Because advection of the velocity field may violate the incompressibility condition, we devise an orthogonal projection technique to remove the divergence while requiring the evaluation of only two boundary integrals. The forces of surface tension, gravity, and solid contact are all treated by a boundary element solve, allowing us to perform detailed simulations of a wide range of liquid phenomena, including waterbells, droplet and jet collisions, fluid chains, and crown splashes.
References:
1. Abraham, R., Marsden, J. E., and Ratiu, T. 1988. Manifolds, Tensor Analysis, and Applications. Springer. Google ScholarDigital Library
2. Angelidis, A., and Neyret, F. 2005. Simulation of smoke based on vortex filament primitives. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 87–96. Google ScholarDigital Library
3. Atkinson, K. E. 1997. The numerical solution of boundary integral equations. In The State of the Art in Numerical Analysis, pp. 223–259.Google Scholar
4. Batty, C., Bertails, F., and Bridson, R. 2007. A fast variational framework for accurate solid-fluid coupling. ACM Trans. Graph. 26, 3, 100. Google ScholarDigital Library
5. Batty, C., Xenos, S., and Houston, B. 2010. Tetrahedral embedded boundary methods for accurate and flexible adaptive fluids. In Computer Graphics Forum, vol. 29, Wiley Online Library, 695–704.Google Scholar
6. Batty, C., Uribe, A., Audoly, B., and Grinspun, E. 2012. Discrete viscous sheets. ACM Trans. Graph. 31, 4, 113. Google ScholarDigital Library
7. Bojsen-Hansen, M., and Wojtan, C. 2013. Liquid surface tracking with error compensation. ACM Trans. Graph. 32, 4, 68. Google ScholarDigital Library
8. Brochu, T., Batty, C., and Bridson, R. 2010. Matching fluid simulation elements to surface geometry and topology. ACM Trans. Graph. 29, 4, 47. Google ScholarDigital Library
9. Brochu, T., Keeler, T., and Bridson, R. 2012. Linear-time smoke animation with vortex sheet meshes. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 87–95. Google ScholarDigital Library
10. Brochu, T. 2006. Fluid animation with explicit surface meshes and boundary-only dynamics. Master’s thesis, University of British Columbia.Google Scholar
11. Bush, J. W., and Hasha, A. E. 2004. On the collision of laminar jets: fluid chains and fishbones. Journal of fluid mechanics 511, 285–310.Google ScholarCross Ref
12. Chen, C., Golberg, M., and Schaback, R. 2003. Recent developments in the dual reciprocity method using compactly supported radial basis functions. Transformation of Domain Effects to the Boundary (YF Rashed and CA Brebbia, eds), WITPress, Southampton, Boston, 138–225.Google Scholar
13. Chentanez, N., Feldman, B. E., Labelle, F., O’Brien, J. F., and Shewchuk, J. R. 2007. Liquid simulation on lattice-based tetrahedral meshes. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer animation, 219–228. Google ScholarDigital Library
14. Clausen, P., Wicke, M., Shewchuk, J. R., and O’brien, J. F. 2013. Simulating liquids and solid-liquid interactions with Lagrangian meshes. ACM Trans. Graph. 32, 2, 17. Google ScholarDigital Library
15. Cohen-Steiner, D., and Morvan, J.-M. 2003. Restricted Delaunay triangulations and normal cycle. In Proceedings of the nineteenth annual Symposium on Computational Geometry, ACM, 312–321. Google ScholarDigital Library
16. Da, F., Batty, C., and Grinspun, E. 2014. Multimaterial mesh-based surface tracking. ACM Trans. Graph. 33, 4, 112:1–112:11. Google ScholarDigital Library
17. Da, F., Batty, C., Wojtan, C., and Grinspun, E. 2015. Double bubbles sans toil and trouble: discrete circulation-preserving vortex sheets for soap films and foams. ACM Trans. Graph. 34, 4, 149. Google ScholarDigital Library
18. Davidson, M. R. 2000. Boundary integral prediction of the spreading of an inviscid drop impacting on a solid surface. Chemical Engineering Science 55, 6, 1159–1170.Google ScholarCross Ref
19. Duffy, M. G. 1982. Quadrature over a pyramid or cube of integrands with a singularity at a vertex. SIAM journal on Numerical Analysis 19, 6, 1260–1262.Google ScholarCross Ref
20. Enright, D., Fedkiw, R., Ferziger, J., and Mitchell, I. 2002. A hybrid particle level set method for improved interface capturing. Journal of Computational Physics 183, 1, 83–116. Google ScholarDigital Library
21. Fedkiw, R. P., Aslam, T., Merriman, B., and Osher, S. 1999. A non-oscillatory Eulerian approach to interfaces in multi-material flows (the ghost fluid method). Journal of Computational Physics 152, 2, 457–492. Google ScholarDigital Library
22. Florez, W., and Power, H. 2001. Comparison between continuous and discontinuous boundary elements in the multidomain dual reciprocity method for the solution of the two-dimensional Navier–Stokes equations. Engineering analysis with boundary elements 25, 1, 57–69.Google Scholar
23. Foster, N., and Fedkiw, R. 2001. Practical animation of liquids. In Proceedings of SIGGRAPH 01, Annual Conference Series, 23–30. Google ScholarDigital Library
24. Foster, N., and Metaxas, D. 1996. Realistic animation of liquids. Graphical models and image processing 58, 5, 471–483. Google ScholarDigital Library
25. Greengard, L., and Rokhlin, V. 1987. A fast algorithm for particle simulations. Journal of Computational Physics 73, 2, 325–348. Google ScholarDigital Library
26. Hahn, D., and Wojtan, C. 2015. High-resolution brittle fracture simulation with boundary elements. ACM Trans. Graph. 34, 4, 151. Google ScholarDigital Library
27. Hartmann, F. 2012. Introduction to boundary elements: theory and applications. Springer Science & Business Media.Google Scholar
28. Hong, J.-M., and Kim, C.-H. 2005. Discontinuous fluids. In ACM Trans. Graph., vol. 24, ACM, 915–920. Google ScholarDigital Library
29. Ihmsen, M., Cornelis, J., Solenthaler, B., Horvath, C., and Teschner, M. 2014. Implicit incompressible SPH. Visualization and Computer Graphics, IEEE Transactions on 20, 3, 426–435. Google ScholarDigital Library
30. Ihmsen, M., Orthmann, J., Solenthaler, B., Kolb, A., and Teschner, M. 2014. SPH Fluids in Computer Graphics. Eurographics 2014 – State of the Art Reports.Google Scholar
31. James, D. L., and Pai, D. K. 1999. ArtDefo: accurate real time deformable objects. In Proceedings of SIGGRAPH 99, Annual Conference Series, 65–72. Google ScholarDigital Library
32. Keeler, T., and Bridson, R. 2014. Ocean waves animation using boundary integral equations and explicit mesh tracking. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 11–19. Google ScholarDigital Library
33. Ladyzhenskaya, O. A. 1963. The mathematical theory of viscous incompressible flow. Gordon and Breach New York.Google Scholar
34. Mantič, V. 1993. A new formula for the C-matrix in the Somigliana identity. Journal of Elasticity 33, 3, 191–201.Google ScholarCross Ref
35. Misztal, M. K., Bridson, R., Erleben, K., Bærentzen, J. A., and Anton, F. 2010. Optimization-based fluid simulation on unstructured meshes. In VRIPHYS, 11–20.Google Scholar
36. Narain, R., Samii, A., and O’Brien, J. F. 2012. Adaptive anisotropic remeshing for cloth simulation. ACM Trans. Graph. 31, 6, 152. Google ScholarDigital Library
37. Osher, S., and Sethian, J. A. 1988. Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79, 1, 12–49. Google ScholarDigital Library
38. Pan, K.-L., Chou, P.-C., and Tseng, Y.-J. 2009. Binary droplet collision at high Weber number. Phys. Rev. E 80 (Sep), 036301.Google ScholarCross Ref
39. Park, S. I., and Kim, M. J. 2005. Vortex fluid for gaseous phenomena. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 261–270. Google ScholarDigital Library
40. Pfaff, T., Thuerey, N., and Gross, M. 2012. Lagrangian vortex sheets for animating fluids. ACM Trans. Graph. 31, 4, 112. Google ScholarDigital Library
41. Phillips, H. B. 1933. Vector analysis. Wiley New York.Google Scholar
42. Power, H., and Partridge, P. W. 1994. The use of Stokes’ fundamental solution for the boundary only element formulation of the three-dimensional Navier-Stokes equations for moderate Reynolds numbers. International journal for numerical methods in engineering 37, 11, 1825–1840.Google Scholar
43. Quan, S., Lou, J., and Schmidt, D. P. 2009. Modeling merging and breakup in the moving mesh interface tracking method for multiphase flow simulations. Journal of Computational Physics 228, 7, 2660–2675. Google ScholarDigital Library
44. Sauter, S. A., and Schwab, C. 2011. Boundary element methods. Springer.Google Scholar
45. Schroeder, C., Zheng, W., and Fedkiw, R. 2012. Semi-implicit surface tension formulation with a Lagrangian surface mesh on an Eulerian simulation grid. Journal of Computational Physics 231, 4, 2092–2115. Google ScholarDigital Library
46. Selle, A., Rasmussen, N., and Fedkiw, R. 2005. A vortex particle method for smoke, water and explosions. In ACM Trans. Graph., vol. 24, ACM, 910–914. Google ScholarDigital Library
47. Stam, J. 1999. Stable fluids. In Proceedings of SIGGRAPH 99, Annual Conference Series, ACM Press/Addison-Wesley Publishing Co., 121–128. Google ScholarDigital Library
48. Stock, M. J. 2006. A regularized inviscid vortex sheet method for three dimensional flows with density interfaces. PhD thesis, Worcester Polytechnic Institute.Google Scholar
49. Thürey, N., Wojtan, C., Gross, M., and Turk, G. 2010. A multiscale approach to mesh-based surface tension flows. In ACM Trans. Graph., vol. 29, ACM, 48. Google ScholarDigital Library
50. Wang, H., Mucha, P. J., and Turk, G. 2005. Water drops on surfaces. In ACM Trans. Graph., vol. 24, ACM, 921–929. Google ScholarDigital Library
51. Weissmann, S., and Pinkall, U. 2010. Filament-based smoke with vortex shedding and variational reconnection. ACM Trans. Graph. 29, 4, 115. Google ScholarDigital Library
52. Wojtan, C., Müller-Fischer, M., and Brochu, T. 2011. Liquid simulation with mesh-based surface tracking. In ACM SIGGRAPH 2011 Courses, ACM, 8. Google ScholarDigital Library
53. Xue, M., Xü, H., Liu, Y., and Yue, D. K. 2001. Computations of fully nonlinear three-dimensional wave–wave and wave–body interactions. Part 1. Dynamics of steep three-dimensional waves. Journal of Fluid Mechanics 438, 11–39.Google ScholarCross Ref
54. Zhang, X., and Bridson, R. 2014. A PPPM fast summation method for fluids and beyond. ACM Trans. Graph. 33, 6, 206. Google ScholarDigital Library
55. Zhang, Y., Wang, H., Wang, S., Tong, Y., and Zhou, K. 2012. A deformable surface model for real-time water drop animation. Visualization and Computer Graphics, IEEE Transactions on 18, 8, 1281–1289. Google ScholarDigital Library
56. Zhang, X., Bridson, R., and Greif, C. 2015. Restoring the missing vorticity in advection-projection fluid solvers. ACM Trans. Graph. 34, 4. Google ScholarDigital Library
57. Zhu, B., Quigley, E., Cong, M., Solomon, J., and Fedkiw, R. 2014. Codimensional surface tension flow on simplicial complexes. ACM Trans. Graph. 33, 4, 111. Google ScholarDigital Library
58. Zhu, Y., Bridson, R., and Greif, C. 2015. Simulating rigid body fracture with surface meshes. ACM Trans. Graph. 34, 4, 150. Google ScholarDigital Library