“Structure-aware hair capture” by Luo, Li and Rusinkiewicz

  • ©Linjie Luo, Hao Li, and Szymon Rusinkiewicz



Session Title:

    Image-Based Reconstruction


    Structure-aware hair capture




    Existing hair capture systems fail to produce strands that reflect the structures of real-world hairstyles. We introduce a system that reconstructs coherent and plausible wisps aware of the underlying hair structures from a set of still images without any special lighting. Our system first discovers locally coherent wisp structures in the reconstructed point cloud and the 3D orientation field, and then uses a novel graph data structure to reason about both the connectivity and directions of the local wisp structures in a global optimization. The wisps are then completed and used to synthesize hair strands which are robust against occlusion and missing data and plausible for animation and simulation. We show reconstruction results for a variety of complex hairstyles including curly, wispy, and messy hair.


    1. Beeler, T., Bickel, B., Noris, G., Marschner, S., Beardsley, P., Sumner, R. W., and Gross, M. 2012. Coupled 3d reconstruction of sparse facial hair and skin. ACM Trans. Graph. 31, 4, 117:1–117:10. Google ScholarDigital Library
    2. Bergou, M., Wardetzky, M., Robinson, S., Audoly, B., and Grinspun, E. 2008. Discrete elastic rods. ACM Trans. Graph. 27, 3, 63:1–63:12. Google ScholarDigital Library
    3. Bonneel, N., Paris, S., Panne, M. V. D., Durand, F., and Drettakis, G. 2009. Single photo estimation of hair appearance. Computer Graphics Forum (Proc. EGSR) 28, 4. Google ScholarDigital Library
    4. Boykov, Y., Veksler, O., and Zabih, R. 2001. Fast approximate energy minimization via graph cuts. IEEE Trans. PAMI 23, 11, 1222–1239. Google ScholarDigital Library
    5. Chai, M., Wang, L., Weng, Y., Yu, Y., Guo, B., and Zhou, K. 2012. Single-view hair modeling for portrait manipulation. ACM Trans. Graph. 31, 4, 116:1–116:8. Google ScholarDigital Library
    6. Chernov, N. 2011. Circular and linear regression: fitting circles and lines by least squares. Monographs on statistics and applied probability. CRC Press/Taylor & Francis, Boca Raton.Google Scholar
    7. Furukawa, Y., and Ponce, J. 2010. Accurate, dense, and robust multiview stereopsis. IEEE Trans. PAMI 32, 1362–1376. Google ScholarDigital Library
    8. Herrera, T. L., Zinke, A., and Weber, A. 2012. Lighting hair from the inside: A thermal approach to hair reconstruction. ACM Trans. Graph. 31, 6, 146:1–146:9. Google ScholarDigital Library
    9. Jakob, W., Moon, J. T., and Marschner, S. 2009. Capturing hair assemblies fiber by fiber. ACM Trans. Graph. 28, 5, 164:1–164:9. Google ScholarDigital Library
    10. Kim, T.-Y., and Neumann, U. 2002. Interactive multiresolution hair modeling and editing. ACM Trans. Graph. 21, 3, 620–629. Google ScholarDigital Library
    11. Levin, D. 1998. The approximation power of moving least-squares. Mathematics of Computation 67, 224, 1517–1531. Google ScholarDigital Library
    12. Li, G., Liu, L., Zheng, H., and Mitra, N. J. 2010. Analysis, reconstruction and manipulation using arterial snakes. ACM Trans. Graph. 29, 5, 152:1–152:10. Google ScholarDigital Library
    13. Livny, Y., Yan, F., Olson, M., Chen, B., Zhang, H., and El-sana, J. 2010. Automatic reconstruction of tree skeletal structures from point clouds. ACM Trans. Graph. 29, 6, 151:1–151:8. Google ScholarDigital Library
    14. Luo, L., Li, H., Paris, S., Weise, T., Pauly, M., and Rusinkiewicz, S. 2012. Multi-view hair capture using orientation fields. In Proc. CVPR. Google ScholarDigital Library
    15. Marschner, S., Jensen, H. W., and S. Worley, M. C., and Hanrahan, P. 2003. Light scattering from human hair fibers. ACM Trans. Graph. 22, 3, 780–791. Google ScholarDigital Library
    16. Mehra, R., Tripathi, P., Sheffer, A., and Mitra, N. J. 2010. Visibility of noisy point cloud data. Computers and Graphics 34, 3, 219–230. Google ScholarDigital Library
    17. Nan, L., Sharf, A., Zhang, H., Cohen-Or, D., and Chen, B. 2010. SmartBoxes for interactive urban reconstruction. ACM Trans. Graph. 29, 4, 93:1–93:10. Google ScholarDigital Library
    18. Paris, S., Briceño, H., and Sillion, F. 2004. Capture of hair geometry from multiple images. ACM Trans. Graph. 23, 3, 712–719. Google ScholarDigital Library
    19. Paris, S., Chang, W., Kozhushnyan, O. I., Jarosz, W., Matusik, W., Zwicker, M., and Durand, F. 2008. Hair Photobooth: Geometric and photometric acquisition of real hairstyles. ACM Trans. Graph. 27, 3, 30:1–30:9. Google ScholarDigital Library
    20. Savadjiev, P., Campbell, J. S., Pike, G. B., and Siddiqi, K. 2006. 3d curve inference for diffusion mri regularization and fibre tractography. Medical Image Analysis 10, 5, 799–813.Google ScholarCross Ref
    21. Sobottka, G., Kusak, M., and Weber, A. 2006. In Proc. CGIV, 365–371. Google ScholarDigital Library
    22. Taubin, G. 1991. Estimation of planar curves, surfaces, and nonplanar space curves defined by implicit equations with applications to edge and range image segmentation. IEEE Trans. PAMI 13, 11, 1115–1138. Google ScholarDigital Library
    23. Wang, L., Yu, Y., Zhou, K., and Guo, B. 2009. Example-based hair geometry synthesis. ACM Trans. Graph. 28, 3, 56:1–56:9. Google ScholarDigital Library
    24. Ward, K., Lin, M. C., Lee, J., Fisher, S., and Macri, D. 2003. Modeling hair using level-of-detail representations. In Proc. CASA, p. 41. Google ScholarDigital Library
    25. Ward, K., Bertails, F., yong Kim, T., Marschner, S. R., paule Cani, M., and Lin, M. C. 2006. A survey on hair modeling: Styling, simulation, and rendering. TVCG 13, 2, 213–234. Google ScholarDigital Library
    26. Wei, Y., Ofek, E., Quan, L., and Shum, H.-Y. 2005. Modeling hair from multiple views. ACM Trans. Graph. 24, 3, 816–820. Google ScholarDigital Library
    27. Yagyu, K., Hayashi, K., and Chang, S. 2006. Orientation of multi-hair follicles in nonbald men: perpendicular versus parallel. Dermatologic Surgery 32, 5, 651–660.Google Scholar
    28. Yuksel, C., Schaefer, S., and Keyser, J. 2009. Hair meshes. ACM Trans. Graph. 28, 5, 166:1–166:7. Google ScholarDigital Library

ACM Digital Library Publication: