“Solid simulation with oriented particles” by Müller-Fischer and Chentanez

  • ©Matthias Müller-Fischer and Nuttapong Chentanez




    Solid simulation with oriented particles



    We propose a new fast and robust method to simulate various types of solid including rigid, plastic and soft bodies as well as one, two and three dimensional structures such as ropes, cloth and volumetric objects. The underlying idea is to use oriented particles that store rotation and spin, along with the usual linear attributes, i.e. position and velocity. This additional information adds substantially to traditional particle methods. First, particles can be represented by anisotropic shapes such as ellipsoids, which approximate surfaces more accurately than spheres. Second, shape matching becomes robust for sparse structures such as chains of particles or even single particles because the undefined degrees of freedom are captured in the rotational states of the particles. Third, the full transformation stored in the particles, including translation and rotation, can be used for robust skinning of graphical meshes and for transforming plastic deformations back into the rest state.


    1. Baraff, D., and Witkin, A. 1998. Large steps in cloth simulation. Proceedings of ACM Siggraph, 43–54. Google Scholar
    2. Bargteil, A. W., Wojtan, C., Hodgins, J. K., and Turk, G. 2007. A finite element method for animating large viscoplastic flow. ACM Transactions on Graphics 26, 3 (July), 16:1–16:8. Google ScholarDigital Library
    3. Becker, M., Ihmsen, M., and Teschner, M. 2009. Corotated sph for deformable solids. In Eurographics Workshop on Natural Phenomena, 27–34. Google Scholar
    4. Bergou, M., Audoly, B., Vouga, E., Wardetzky, M., and Grinspun, E. 2010. Discrete Viscous Threads. SIGGRAPH (ACM Transactions on Graphics). Google Scholar
    5. Bertails, F., Audoly, B., Cani, M.-P., Querleux, B., Leroy, F., and Lévêque, J.-L. 2006. Super-helices for predicting the dynamics of natural hair. ACM Transaction on Graphics 25, 3 (July), 1180–1187. Google ScholarDigital Library
    6. Bertails, F. 2009. Linear time super-helices. Computer Graphics Forum 28, 2 (Apr.), 417–426.Google ScholarCross Ref
    7. Bridson, R., Marino, S., and Fedkiw, R. 2003. Simulation of clothing with folds and wrinkles. In ACM SIGGRAPH Symposium on Computer Animation, 28–36. Google ScholarDigital Library
    8. Gerszewski, D., Bhattacharya, H., and Bargteil, A. W. 2009. A point-based method for animating elastoplastic solids. In Proceedings of the 2009 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, ACM, New York, NY, USA, SCA ’09, 133–138. Google Scholar
    9. Goldenthal, R., Harmon, D., Fattal, R., Bercovier, M., and Grinspun, E. 2007. Efficient Simulation of Inextensible Cloth. SIGGRAPH (ACM Transactions on Graphics) 26, 3. Google ScholarDigital Library
    10. Grinspun, E., Hirani, A. N., Desbrun, M., and Schröder, P. 2003. Discrete shells. In Proceedings of the 2003 ACM SIGGRAPH/Eurographics symposium on Computer animation, Eurographics Association, Aire-la-Ville, Switzerland, Switzerland, SCA ’03, 62–67. Google ScholarDigital Library
    11. Jansson, J., and Vergeest, J. S. M. 2003. Combining deformable- and rigid-body mechanics simulation. In In The Visual Computer, SpringerVerlag, 280–290.Google Scholar
    12. Kavan, L., Collins, S., Zara, J., and O’Sullivan, C. 2008. Geometric skinning with approximate dual quaternion blending. ACM Press, New York, NY, USA, vol. 27, 105. Google Scholar
    13. Lenoir, J., and Fonteneau, S. 2004. Mixing deformable and rigid-body mechanics simulation. In Proceedings of the Computer Graphics International, IEEE Computer Society, Washington, DC, USA, 327–334. Google Scholar
    14. Martin, S., Kaufmann, P., Botsch, M., Wicke, M., and Gross, M. 2008. Polyhedral finite elements using harmonic basis functions. Computer Graphics Forum 27, 5, 1521–1529. Google ScholarDigital Library
    15. Martin, S., Kaufmann, P., Botsch, M., Grinspun, E., and Gross, M. 2010. Unified simulation of elastic rods, shells, and solids. ACM Trans. on Graphics (Proc. SIGGRAPH) 29, 3, 39:1–39:10. Google ScholarDigital Library
    16. Müller, M., and Gross, M. H. 2004. Interactive virtual materials. In Graphics Interface 2004, 239–246. Google ScholarDigital Library
    17. Müller, M., Keiser, R., Nealen, A., Pauly, M., Gross, M., and Alexa, M. 2004. Point based animation of elastic, plastic and melting objects. In the ACM SIGGRAPH 2004 Symposium on Computer Animation, 141–151. Google Scholar
    18. Müller, M., Heidelberger, B., and Teschner, M. 2005. Meshless deformations based on shape matching. In Proc. SIGGRAPH 2005, 471–478. Google Scholar
    19. Müller, M., Hennix, B. H. M., and Ratcliff, J. 2006. Position based dynamics. Proceedings of Virtual Reality Interactions and Physical Simulations, 71–80.Google Scholar
    20. O’Brien, J. F., and Hodgins, J. K. 1999. Graphical modeling and animation of brittle fracture. In Computer Graphics (SIGGRAPH ’99 Proceedings), ACM Press, New York, 137–146. Google Scholar
    21. O’Brien, J. F., Zordan, V. B., and Hodgins, J. K. 1997. Combining active and passive simulations for secondary motion. In Proceedings of SIGGRAPH 1997, Technical Sketch. Google Scholar
    22. O’Brien, J. F., Bargteil, A. W., and Hodgins, J. K. 2002. Graphical modeling and animation of ductile fracture. In Computer Graphics (SIGGRAPH 2002 Proceedings), 291–294. Google Scholar
    23. Pai, D. K. 2002. STRANDS: Interactive simulation of thin solids using Cosserat models. Computer Graphics Forum 21, 3 (Sept.), 347–352.Google ScholarCross Ref
    24. Pauly, M., Keiser, R., Adams, B., Dutré, P., Gross, M., and Guibas, L. J. 2005. Meshless animation of fracturing solids. ACM Trans. Graph. 24 (July), 957–964. Google ScholarDigital Library
    25. Provot, X. 1995. Deformation constraints in a mass-spring model to describe rigid cloth behavior. Proceedings of Graphics Interface, 147–154.Google Scholar
    26. Rivers, A. R., and James, D. L. 2007. Fastlsm: Fast lattice shape matching for robust real-time deformation. In ACM Transactions on Graphics (Proc. SIGGRAPH 2007), vol. 26(3), 82:1–82:6. Google Scholar
    27. Schmedding, R., and Teschner, M. 2008. Inversion handling for stable deformable modeling. In The Visual Computer, vol. 24, 625–633. Google ScholarDigital Library
    28. Sifakis, E., Shinar, T., Irving, G., and Fedkiw, R. 2007. Hybrid simulation of deformable solids. In Proceedings of the 2007 Symposium on Computer Animation, 81–90. Google ScholarDigital Library
    29. Spillmann, J., and Teschner, M. 2007. CORDE: Cosserat rod elements for the dynamic simulation of one-dimensional elastic objects. In Proceedings of the 2007 Symposium on Computer Animation, Eurographics Association, 63–72. Google ScholarDigital Library
    30. Stam, J. 2009. Nucleus: Towards a uni?ed dynamics solver for computer graphics. In In IEEE International Conference on Computer-Aided Design and Computer Graphics, 1–11.Google Scholar
    31. Szeliski, R., and Tonnesen, D. 1992. Surface modeling with oriented particle systems. SIGGRAPH Comput. Graph. 26 (July), 185–194. Google ScholarDigital Library
    32. Teschner, M., Heidelberger, B., Müller, M., Pomeranerts, D., and Gross, M. 2003. Optimized spatial hashing for collision detection of deformable objects. Proc. Vision, Modeling, Visualization VMV 2003, 47–54.Google Scholar
    33. Twigg, C., and Kacic-Alesic, Z. 2010. Point cloud glue: Constraining simulations using the procrustes transform. ACM SIGGRAPH/Eurographics Symposium on Computer Animation. Google ScholarDigital Library
    34. Volino, P., Magnenat-Thalmann, N., and Faure, F. 2009. A simple approach to nonlinear tensile stiffness for accurate cloth simulation. ACM Trans. Graph. 28 (September), 105:1–105:16. Google ScholarDigital Library
    35. Wojtan, C., and Turk, G. 2008. Fast viscoelastic behavior with thin features. ACM Transactions on Graphics 27, 3 (Aug.), 47:1–47:8. Google ScholarDigital Library
    36. Yu, J., and Turk, G. 2010. Reconstructing surfaces of particle-based fluids using anisotropic kernels. ACM SIGGRAPH/Eurographics Symposium on Computer Animation. Google ScholarDigital Library

ACM Digital Library Publication:

Overview Page: