“Skin microstructure deformation with displacement map convolution” by Nagano, Fyffe, Alexander, Barbic, Li, et al. …

  • ©Koki Nagano, Graham Fyffe, Oleg Alexander, Jernej Barbic, Hao Li, Abhijeet Ghosh, and Paul E. Debevec

Conference:


Type:


Title:

    Skin microstructure deformation with displacement map convolution

Presenter(s)/Author(s):



Abstract:


    We present a technique for synthesizing the effects of skin microstructure deformation by anisotropically convolving a high-resolution displacement map to match normal distribution changes in measured skin samples. We use a 10-micron resolution scanning technique to measure several in vivo skin samples as they are stretched and compressed in different directions, quantifying how stretching smooths the skin and compression makes it rougher. We tabulate the resulting surface normal distributions, and show that convolving a neutral skin microstructure displacement map with blurring and sharpening filters can mimic normal distribution changes and microstructure deformations. We implement the spatially-varying displacement map filtering on the GPU to interactively render the effects of dynamic microgeometry on animated faces obtained from high-resolution facial scans.

References:


    1. Alexander, O., Rogers, M., Lambeth, W., Chiang, J.-Y., Ma, W.-C., Wang, C.-C., and Debevec, P. 2010. The Digital Emily Project: Achieving a photoreal digital actor. IEEE Computer Graphics and Applications 30 (July), 20–31. Google ScholarDigital Library
    2. Beeler, T., Bickel, B., Beardsley, P., Sumner, B., and Gross, M. 2010. High-quality single-shot capture of facial geometry. ACM Trans. Graph. 29 (July), 40:1–40:9. Google ScholarDigital Library
    3. Beeler, T., Hahn, F., Bradley, D., Bickel, B., Beardsley, P., Gotsman, C., Sumner, R. W., and Gross, M. 2011. High-quality passive facial performance capture using anchor frames. ACM Trans. Graph. 30, 4 (July), 75:1–75:10. Google ScholarDigital Library
    4. Bickel, B., Bächer, M., Otaduy, M. A., Matusik, W., Pfister, H., and Gross, M. 2009. Capture and modeling of non-linear heterogeneous soft tissue. ACM Trans. Graph. 28, 3 (July), 89:1–89:9. Google ScholarDigital Library
    5. Bickel, B., Kaufmann, P., Skouras, M., Thomaszewski, B., Bradley, D., Beeler, T., Jackson, P., Marschner, S., Matusik, W., and Gross, M. 2012. Physical face cloning. ACM Trans. Graph. 31, 4 (July), 118:1–118:10. Google ScholarDigital Library
    6. Cook, R. L., and Torrance, K. E. 1982. A reflectance model for computer graphics. ACM Trans. Graph. 1, 1 (Jan.), 7–24. Google ScholarDigital Library
    7. D’Eon, E., Luebke, D., and Enderton, E. 2007. Efficient rendering of human skin. In Proceedings of the 18th Eurographics Conference on Rendering Techniques, Eurographics Association, Aire-la-Ville, Switzerland, Switzerland, EGSR’07, 147–157. Google ScholarDigital Library
    8. Dupuy, J., Heitz, E., Iehl, J.-C., Poulin, P., Neyret, F., and Ostromoukhov, V. 2013. Linear efficient antialiased displacement and reflectance mapping. ACM Trans. Graph. 32, 6 (Nov.), 211:1–211:11. Google ScholarDigital Library
    9. Edwards, C., and Marks, R. 1995. Evaluation of biomechanical properties of human skin. Clinics in Dermatology 13, 375–380.Google ScholarCross Ref
    10. Federici, J. F., Guzelsu, N., Lim, H. C., Jannuzzi, G., Findley, T., Chaudhry, H. R., and Ritter, A. B. 1999. Noninvasive light-reflection technique for measuring soft-tissue stretch. Appl. Opt. 38, 31 (Nov), 6653–6660.Google ScholarCross Ref
    11. Ferguson, J., and Barbenel, J. 1981. Skin surface patterns and the directional mechanical properties of the dermis. In Bioengineering and the Skin, R. Marks and P. Payne, Eds. Springer Netherlands, 83–92.Google Scholar
    12. Fyffe, G., Jones, A., Alexander, O., Ichikari, R., and Debevec, P. 2014. Driving high-resolution facial scans with video performance capture. ACM Trans. Graph. 34, 1 (Dec.), 8:1–8:14. Google ScholarDigital Library
    13. Ghosh, A., Fyffe, G., Tunwattanapong, B., Busch, J., Yu, X., and Debevec, P. 2011. Multiview face capture using polarized spherical gradient illumination. ACM Trans. Graph. 30, 6 (Dec.), 129:1–129:10. Google ScholarDigital Library
    14. Golovinskiy, A., Matusik, W., Pfister, H., Rusinkiewicz, S., and Funkhouser, T. 2006. A statistical model for synthesis of detailed facial geometry. ACM Trans. Graph. 25, 3 (July), 1025–1034. Google ScholarDigital Library
    15. Graham, P., Tunwattanapong, B., Busch, J., Yu, X., Jones, A., Debevec, P., and Ghosh, A. 2013. Measurement-based synthesis of facial microgeometry. Computer Graphics Forum 32, 2pt3, 335–344.Google Scholar
    16. Guzelsu, N., Federici, J. F., Lim, H. C., Chauhdry, H. R., Ritter, A. B., and Findley, T. 2003. Measurement of skin stretch via light reflection. Journal of Biomedical Optics 8, 1, 80–86.Google ScholarCross Ref
    17. Heitz, E. 2014. Understanding the masking-shadowing function in microfacet-based brdfs. Journal of Computer Graphics Techniques (JCGT) 3, 2 (June), 32–91.Google Scholar
    18. Irving, G., Teran, J., and Fedkiw, R. 2004. Invertible finite elements for robust simulation of large deformation. In Proceedings of the 2004 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, Eurographics Association, Aire-la-Ville, Switzerland, Switzerland, SCA ’04, 131–140. Google ScholarDigital Library
    19. Jakob, W., Hašan, M., Yan, L.-Q., Lawrence, J., Ramamoorthi, R., and Marschner, S. 2014. Discrete stochastic microfacet models. ACM Trans. Graph. 33, 4 (July), 115:1–115:10. Google ScholarDigital Library
    20. Jensen, H. W., Marschner, S. R., Levoy, M., and Hanrahan, P. 2001. A practical model for subsurface light transport. In Proceedings of ACM SIGGRAPH 2001, 511–518. Google ScholarDigital Library
    21. Johnson, M. K., Cole, F., Raj, A., and Adelson, E. H. 2011. Microgeometry capture using an elastomeric sensor. ACM Trans. Graph. 30 (Aug.), 46:1–46:8. Google ScholarDigital Library
    22. Li, P., and Kry, P. G. 2014. Multi-layer skin simulation with adaptive constraints. In Proceedings of the Seventh International Conference on Motion in Games, ACM, New York, NY, USA, MIG ’14, 171–176. Google ScholarDigital Library
    23. Liew, Y. M., McLaughlin, R. A., Wood, F. M., and Sampson, D. D. 2011. Reduction of image artifacts in three-dimensional optical coherence tomography of skin in vivo. Journal of Biomedical Optics 16, 11, 116018-116018-10.Google ScholarCross Ref
    24. Ma, W.-C., Hawkins, T., Peers, P., Chabert, C.-F., Weiss, M., and Debevec, P. 2007. Rapid acquisition of specular and diffuse normal maps from polarized spherical gradient illumination. In Rendering Techniques, 183–194. Google ScholarDigital Library
    25. Ma, W.-C., Jones, A., Chiang, J.-Y., Hawkins, T., Frederiksen, S., Peers, P., Vukovic, M., Ouhyoung, M., and Debevec, P. 2008. Facial performance synthesis using deformation-driven polynomial displacement maps. ACM Trans. Graph. 27, 5 (Dec.), 121:1–121:10. Google ScholarDigital Library
    26. Montagna, W., and Parakkal, P. F. 1974. The structure and function of skin. Academic Press, New York, NY, USA, ch. 2.Google Scholar
    27. Olano, M., and Baker, D. 2010. Lean mapping. In Proceedings of the 2010 ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games, ACM, New York, NY, USA, I3D ’10, 181–188. Google ScholarDigital Library
    28. Platt, S. M., and Badler, N. I. 1981. Animating facial expressions. SIGGRAPH Comput. Graph. 15, 3 (Aug.), 245–252. Google ScholarDigital Library
    29. Rémillard, O., and Kry, P. G. 2013. Embedded thin shells for wrinkle simulation. ACM Trans. Graph. 32, 4 (July), 50:1–50:8. Google ScholarDigital Library
    30. Schulkin, B., Lim, H. C., Guzelsu, N., Jannuzzi, G., and Federici, J. F. 2003. Polarized light reflection from strained sinusoidal surfaces. Appl. Opt. 42, 25 (Sep), 5198–5208.Google ScholarCross Ref
    31. Sifakis, E., Neverov, I., and Fedkiw, R. 2005. Automatic determination of facial muscle activations from sparse motion capture marker data. ACM Trans. Graph. 24, 3 (July), 417–425. Google ScholarDigital Library
    32. Terzopoulos, D., and Waters, K. 1993. Analysis and synthesis of facial image sequences using physical and anatomical models. IEEE Trans. Pattern Anal. Mach. Intell. 15, 6 (June), 569–579. Google ScholarDigital Library
    33. Torrance, K. E., and Sparrow, E. M. 1967. Theory of off-specular reflection from roughened surfaces. J. Opt. Soc. Am. 57, 1104–1114.Google ScholarCross Ref
    34. Von Der Pahlen, J., Jimenez, J., Danvoye, E., Debevec, P., Fyffe, G., and Alexander, O. 2014. Digital ira and beyond: Creating real-time photoreal digital actors. In ACM SIGGRAPH 2014 Courses, ACM, New York, NY, USA, SIGGRAPH ’14, 1:1–1:384. Google ScholarDigital Library
    35. Weyrich, T., Matusik, W., Pfister, H., Bickel, B., Donner, C., Tu, C., Mcandless, J., Lee, J., Ngan, A., Jensen, H. W., and Gross, M. 2006. Analysis of human faces using a measurement-based skin reflectance model. ACM Trans. Graph. 25, 3 (July), 1013–1024. Google ScholarDigital Library
    36. Yan, L.-Q., HaŠan, M., Jakob, W., Lawrence, J., Marschner, S., and Ramamoorthi, R. 2014. Rendering glints on high-resolution normal-mapped specular surfaces. ACM Trans. Graph. 33, 4 (July), 116:1–116:9. Google ScholarDigital Library
    37. Zhao, S., Jakob, W., Marschner, S., and Bala, K. 2011. Building volumetric appearance models of fabric using micro ct imaging. ACM Trans. Graph. 30, 4 (July), 44:1–44:10. Google ScholarDigital Library


ACM Digital Library Publication:



Overview Page: