“Sketch-based generation and editing of quad meshes” by Takayama, Panozzo, Sorkine-Hornung and Sorkine-Hornung

  • ©Kenshi Takayama, Daniele Panozzo, Alexander Sorkine-Hornung, and Olga Sorkine-Hornung

Conference:


Type:


Title:

    Sketch-based generation and editing of quad meshes

Session/Category Title: Quads & Meshing


Presenter(s)/Author(s):


Moderator(s):



Abstract:


    Coarse quad meshes are the preferred representation for animating characters in movies and video games. In these scenarios, artists want explicit control over the edge flows and the singularities of the quad mesh. Despite the significant advances in recent years, existing automatic quad remeshing algorithms are not yet able to achieve the quality of manually created remeshings. We present an interactive system for manual quad remeshing that provides the user with a high degree of control while avoiding the tediousness involved in existing manual tools. With our sketch-based interface the user constructs a quad mesh by defining patches consisting of individual quads. The desired edge flow is intuitively specified by the sketched patch boundaries, and the mesh topology can be adjusted by varying the number of edge subdivisions at patch boundaries. Our system automatically inserts singularities inside patches if necessary, while providing the user with direct control of their topological and geometrical locations. We developed a set of novel user interfaces that assist the user in constructing a curve network representing such patch boundaries. The effectiveness of our system is demonstrated through a user evaluation with professional artists. Our system is also useful for editing automatically generated quad meshes.

References:


    1. 3D-Coat, 2013. Pilgway. Version V3, http://3d-coat.com/.Google Scholar
    2. Bae, S.-H., Balakrishnan, R., and Singh, K. 2009. Every-bodyLovesSketch: 3D sketching for a broader audience. In Proc. UIST, 59–68. Google ScholarDigital Library
    3. Bessmeltsev, M., Wang, C., Sheffer, A., and Singh, K. 2012. Design-driven quadrangulation of closed 3D curves. ACM Trans. Graph. 31, 6, 178. Google ScholarDigital Library
    4. Bommes, D., Zimmer, H., and Kobbelt, L. 2009. Mixed-integer quadrangulation. ACM Trans. Graph. 28, 3, 77. Google ScholarDigital Library
    5. Bommes, D., Lempfer, T., and Kobbelt, L. 2011. Global structure optimization of quadrilateral meshes. Comput. Graph. Forum 30, 2, 375–384.Google ScholarCross Ref
    6. Bommes, D., Lévy, B., Pietroni, N., Puppo, E., Silva, C., Tarini, M., and Zorin, D. 2012. Quad meshing. In Eurographics 2012 State of the Art Reports, 159–182.Google Scholar
    7. Campen, M., Bommes, D., and Kobbelt, L. 2012. Dual loops meshing: quality quad layouts on manifolds. ACM Trans. Graph. 31, 4, 110:1–110:11. Google ScholarDigital Library
    8. Chaudhuri, S., and Koltun, V. 2010. Data-driven suggestions for creativity support in 3D modeling. ACM Trans. Graph. 29, 6, 183. Google ScholarDigital Library
    9. Chaudhuri, S., Kalogerakis, E., Guibas, L. J., and Koltun, V. 2011. Probabilistic reasoning for assembly-based 3D modeling. ACM Trans. Graph. 30, 4, 35. Google ScholarDigital Library
    10. Chen, X., Golovinskiy, A., and Funkhouser, T. A. 2009. A benchmark for 3D mesh segmentation. ACM Trans. Graph. 28, 3. Google ScholarDigital Library
    11. Crane, K., Desbrun, M., and Schröder, P. 2010. Trivial connections on discrete surfaces. Comput. Graph. Forum 29, 5, 1525–1533.Google ScholarCross Ref
    12. Daniels II, J., Lizier, M. A. S., Siqueira, M. F., Silva, C. T., and Nonato, L. G. 2011. Template-based quadrilateral meshing. Computers & Graphics 35, 3, 471–482. Google ScholarDigital Library
    13. Fan, L., Meng, M., and Liu, L. 2012. Sketch-based mesh cutting: A comparative study. Graphical Models 74, 6, 292–301. Google ScholarDigital Library
    14. Hildebrandt, K., Polthier, K., and Wardetzky, M. 2005. Smooth feature lines on surface meshes. In Proc. SGP. Google ScholarDigital Library
    15. Huang, J., Zhang, M., Ma, J., Liu, X., Kobbelt, L., and Bao, H. 2008. Spectral quadrangulation with orientation and alignment control. ACM Trans. Graph. 27, 5, 147. Google ScholarDigital Library
    16. Igarashi, T., and Hughes, J. F. 2001. A suggestive interface for 3D drawing. In Proc. UIST, 173–181. Google ScholarDigital Library
    17. Kälberer, F., Nieser, M., and Polthier, K. 2007. Quad-Cover: Surface parameterization using branched coverings. Comput. Graph. Forum 26, 3, 375–384.Google ScholarCross Ref
    18. Lai, Y., Jin, M., Xie, X., He, Y., Palacios, J., Zhang, E., Hu, S., and Gu, X. 2010. Metric-driven RoSy field design and remeshing. IEEE TVCG 16, 1, 95–108. Google ScholarDigital Library
    19. Lee, Y., and Lee, S. 2002. Geometric snakes for triangular meshes. Comput. Graph. Forum 21, 3, 229–238.Google ScholarCross Ref
    20. Li, W.-C., Levy, B., and Paul, J.-C. 2005. Mesh editing with an embedded network of curves. In Proc. SMI, 62–71. Google ScholarDigital Library
    21. Nasri, A., Sabin, M., and Yasseen, Z. 2009. Filling N-sided regions by quad meshes for subdivision surfaces. Comput. Graph. Forum 28, 6, 1644–1658.Google ScholarCross Ref
    22. Palacios, J., and Zhang, E. 2007. Rotational symmetry field design on surfaces. ACM Trans. Graph. 26, 3, 55. Google ScholarDigital Library
    23. Peng, C.-H., Zhang, E., Kobayashi, Y., and Wonka, P. 2011. Connectivity editing for quadrilateral meshes. ACM Trans. Graph. 30, 141:1–141:12. Google ScholarDigital Library
    24. Ray, N., Vallet, B., Li, W., and Lévy, B. 2008. N-symmetry direction field design. ACM Trans. Graph. 27, 2. Google ScholarDigital Library
    25. Schaefer, S., Warren, J., and Zorin, D. 2004. Lofting curve networks using subdivision surfaces. In Proc. SGP, 103–114. Google ScholarDigital Library
    26. Schmidt, R., Khan, A., Singh, K., and Kurtenbach, G. 2009. Analytic drawing of 3D scaffolds. ACM Trans. Graph. 28, 5. Google ScholarDigital Library
    27. Schmidt, R. 2013. Stroke parameterization. Comput. Graph. Forum 32, 2, (to appear).Google Scholar
    28. Takayama, K., Panozzo, D., Sorkine-Hornung, A., and Sorkine-Hornung, O. 2013. Robust and controllable quadrangulation of triangular and rectangular regions. Tech. rep., ETH Zurich.Google Scholar
    29. Tarini, M., Puppo, E., Panozzo, D., Pietroni, N., and Cignoni, P. 2011. Simple quad domains for field aligned mesh parametrization. ACM Trans. Graph. 30, 142:1–142:12. Google ScholarDigital Library
    30. Tierny, J., Daniels, II, J., Nonato, L. G., Pascucci, V., and Silva, C. T. 2011. Inspired quadrangulation. Computer Aided Design 43, 11, 1516–1526. Google ScholarDigital Library
    31. Tierny, J., Daniels II, J., Nonato, L. G., Pascucci, V., and Silva, C. T. 2012. Interactive quadrangulation with Reeb atlases and connectivity textures. IEEE TVCG 18, 10, 1650–1663. Google ScholarDigital Library
    32. Tong, Y., Alliez, P., Cohen-Steiner, D., and Desbrun, M. 2006. Designing quadrangulations with discrete harmonic forms. In Proc. SGP, 201–210. Google ScholarDigital Library
    33. Umetani, N., Igarashi, T., and Mitra, N. J. 2012. Guided exploration of physically valid shapes for furniture design. ACM Trans. Graph. 31, 4, 86. Google ScholarDigital Library
    34. ZBrush, 2013. Pixologic, Inc. Version 4.4, http://www.pixologic.com/zbrush/.Google Scholar
    35. Zhang, M., Huang, J., Liu, X., and Bao, H. 2010. A wave-based anisotropic quadrangulation method. ACM Trans. Graph. 29, 118:1–118:8. Google ScholarDigital Library


ACM Digital Library Publication: